Comparative Archaeologies

The American Southwest (AD 900–1600) and the Iberian Peninsula (3000–1500 BC)

Edited by Katina T. Lillios
Comparative Archaeologies

The American Southwest (AD 900–1600) and the Iberian Peninsula (3000–1500 BC)

edited by Katina T. Lillios
Contents

List of Illustrations vii
List of Tables viii
Preface ix

1 Comparative Archaeology: Archaeology’s Responsibility by Timothy Earle 1

2 Bridging Histories: The Archaeology of Chaco and Los Millares by Stephen H. Lekson and Pedro Díaz-del-Río 21

3 The Southwest, Iberia, and their Worlds by Stephen H. Lekson 25

4 Labor in the Making of Iberian Copper Age Lineages by Pedro Díaz-del-Río 37

5 Bridging Landscapes by Peter N. Peregrine and Leonardo García Sanjuán 57

6 The North American Postclassic Oikoumene: AD 900–1200 by Peter N. Peregrine 63

7 Transformations, Invocations, Echoes, Resistance: The Assimilation of the Past in Southern Iberia (5th to 1st Millenia BC) by Leonardo García Sanjuán 81

8 Bridging Bodies by Ventura R. Pérez and Estella Weiss-Krejci 103

9 Rethinking Violence: Behavioral and Cultural Implications for Ancestral Pueblo Populations (AD 900–1300) by Ventura R. Pérez 121

10 Changing Perspectives on Mortuary Practices in Late Neolithic/ Copper Age and Early Bronze Age Iberia by Estella Weiss-Krejci 153
11 Bridging Gender
 by Marit K. Munson and Rui Boaventura 175
12 Gender, Art, and Ritual Hierarchy in the Ancient Pueblos
 of the Rio Grande Valley, New Mexico 189
 by Marit K. Munson
13 Bodies in Motion: Implications of Gender in Long-Distance
 Exchange between the Lisbon and Alentejo Regions of
 Portugal in the Late Neolithic 209
 by Rui Boaventura
14 Bridging Art
 by Jill E. Neitzel and Sara Fairén Jiménez 221
15 Mixed Messages: Art and Leadership in the
 Late Prehispanic Southwest 229
 by Jill E. Neitzel
16 Sites, Practices, and the Social Landscape of Rock Art in
 Mediterranean Iberia during the Neolithic and Copper Age 257
 by Sara Fairén Jiménez
17 Conclusions 277
 by Katina T. Lillios

List of Contributors 293
One of the long-standing debates in Iberian archaeology concerns the development of permanent structures of social inequality in late prehistory. In this discussion dead bodies have played an important role (for example, Chapman 1990, 2003; Delibes et al. 1995; Díaz-Andreu 1993; Díaz-del-Río and García Sanjuán 2006; García Sanjuán 1999; Gilman 2001; Gilman and Thornes 1985; Hernando 1997; Kunst 1995; Mathers 1994). During the Late Neolithic/Copper Age (ca. 3300–2200 BC), natural caves and artificial caves (*hypogea*), mortuary monuments such as passage graves, gallery graves, *tholoi* and *tumuli*, and simple pits and silos were preferred locations for the deposition of the dead. Although the majority of the dead was deposited outside settlements, human bones have also been encountered in settlements. Late Neolithic and Copper Age mortuary contexts usually contain multiple individuals, ranging from at least a few to hundreds of people. The human remains — frequently associated with animal bones (Weiss-Krejci 2006) — are often disarticulated, broken, cut, chopped, and burned (for example, Antunes and Cunha 1998; Cardoso 1994: 143; Lillo Carpio and Walker 1987; see also Rojo and Kunst 2002; Weiss-Krejci 2005a).

Between the Late Neolithic/Copper Age and the Early Bronze Age (ca. 2200–1500 BC), significant changes in locations and types of mortuary contexts, modes of corpse deposition, and quality and quantity of grave goods took place (see García Sanjuán 2006: 151–60; Ontañón-Peredo 2006: 57). Although Neolithic and Copper Age monuments and caves were often reused in later times (Chapman 2005; García Sanjuán, this volume), in the Early Bronze Age new grave types such as cists — some surrounded by stones and/or covered by mounds — and different types of pits and small artificial caves appear (for example, Díaz-del-Río 2006: 75; García Sanjuán 2006: 160–62; Leisner and Leisner 1943;
In the Early Bronze Age, grave sites continue to be located outside settlements, but intramural depositions become more common. In contrast to Late Neolithic and Copper Age mortuary contexts, early Bronze Age burials hold only a few individuals (often only one).

In this chapter, I would like to discuss a few issues regarding treatment of the corpse and deposition modes in Late Neolithic/Copper Age and Early Bronze Age Iberia, which in my opinion have not received sufficient attention in the past. Considering the importance that dead bodies assume in models of social evolution, it is surprising how little we know about body treatment, funeral and post-funeral rites, and formation processes of mortuary deposits. In contrast to France, for example, where meticulous methods of field documentation of human bones have been employed for some time and a large database of well documented collective tombs exists (Chambon 2003; Duday 1997), in the Iberian Peninsula spatial and stratigraphic relationship of grave goods and human and animal remains often cannot be assessed from the publications. Though techniques during recovery of human remains in the Iberian Peninsula are continuously improving and the general awareness for the value of osteological material has grown, the methods of recording, analyzing, and publishing collective mortuary deposits with human remains are still not sufficient. Physical anthropologists are not always present during excavation. Since bones in the Iberian Peninsula also occur outside “mortuary contexts,” human remains can make it into bags with animal bones, only to be discovered by zooarchaeologists later. Additionally, in some areas, such as Galicia and northern Portugal, as well as parts of southwestern Iberia, soil acidity has led to the complete destruction of osteological material. From these areas only a few Copper Age and Bronze Age human remains have been recovered.

Treatment of the Corpse and Deposition Modes

Body Treatment

According to Carr (1995), who investigated the cultural determinants of mortuary practices in 31 non-state societies from the Human Relations Area Files, the treatment of the corpse is most often determined by beliefs about the afterlife, beliefs about universal orders, by social classification, and vertical social position of the deceased. The ideological and social implications of differential treatment of corpses postulated by Carr — supported by historic sources from state societies (see Weiss-Krejci 2005a) — have important implications. Differences in corpse treatment can help us understand status differences between groups and individuals and reveal group affiliation, belief systems, and ethnic distinctions.

My own recent review of literature on Neolithic/Copper Age burials (Weiss-Krejci 2005a, 2006) shows that body treatment in the Iberian Peninsula was quite variable. In the Late Neolithic and Copper Age, treatment of the dead consisted of burying the body in the flesh, artificial dehydration, cremation (only at Abric de l’Escurreupenia, Pascual Benito 2002), and body storage (passive excarnation). A few cases of active excarnation (defleshing) may also exist. For example, in several settlements, caves, tombs, and
pits, human bones with cut marks and signs of burning have been found (for example, Antunes and Cunha 1998; Etxeberría 2000; Martínez Navarrete 1984; Weiss-Krejci 2005a). These cuts and burns could result from the stripping of skin and flesh as well as a variety of procedures that may be related to the redeposition of bones. While cut and burned bones occur in deposits of the fourth and the third millennium BC, the impregnation of bones with ochre seems to be associated with older, fourth-millennium-BC deposits only (for example, Gruta Lugar do Canto; Leitão et al. 1987; Serrão and Marques 1971).

In the Early Bronze Age, bodies were predominantly deposited in the flesh, although, as I will discuss, body storage and curation probably also took place. Though dehydration of corpses was probably practiced both in the Copper and Bronze Age, all known Bronze Age mummies are natural (for example, Castellón Alto; Molina et al. 2003).

Individual and Collective Burials

Prehistorians working in the Iberian Peninsula have interpreted the change in grave types, grave goods, and especially the change from “collective” to “individual” burial as a sign of increasing social complexity and of changing attitudes towards the dead. This behavior has also fostered ideas that in the Neolithic and in the Copper Age corpses received less attention in funerary treatment than in the Bronze Age. Collective burial has been equated with collective identity, communalism, collectivism, and solidarism (for example, Criado Boado 1989: 91). From a cross-cultural perspective, the presence of multiple bodies in a collective mortuary context may have many different meanings. In Europe, it was a frequent custom to exhume bodies from over-crowded churchyards after corpses had decomposed and to store the bones in charnel houses or underneath churches. These collective bone chambers (ossuaries) comprise high numbers of very fragmentary remains and contain different kinds of people from the lower strata of society. On the other hand, and already discussed by Kunst (1995), collective burials in elaborate tombs are not always an expression of egalitarianism. In diverse areas of the world and at different times, such as among the ancient Maya, the present day Sa’dan Toraja of Indonesia, the Merina of Madagascar, and in dynastic Europe, collective tomb burials are a hallmark of multigenerational, kinship-based corporate groups (Bloch 1971; Waterson 1995; Weiss-Krejci 2004). The formation processes, as well as the number of individuals buried in these tombs, are extremely variable. Some tombs were used for sequential deposition only. Other tombs hold reburied bodies only, some a combination of both. Death dates of reburied people can predate the tomb by centuries.

At least four different processes can be responsible for the formation of collective deposits: (a) contemporaneous death — simultaneous multiple deposition; (b) sequential death — successive individual deposition; (c) sequential death — simultaneous multiple deposition; and (d) exhumation — simultaneous multiple redeposition. The first deposition type represents people who have died at the same time and were buried simultaneously, in the flesh, in the same tomb (for example, mother and infant who died during birth; people who died from an epidemic disease; warriors that were killed in the same battle or individuals that were collectively killed during raids and attacks). In process b, people have died at different times and were buried in one tomb one by one over a long
time period. In this case every corpse is deposited individually, but later disturbed or re-arranged during episodes of reentry. In processes (c) and (d), the dead are also deposited *en masse* (as in process a) but did not die at the same time. Whether bones or articulated corpses are deposited after some time of storage (process c) or during reburial following exhumation (process d) often merely depends on the time that elapsed since death and whether and how the body was processed. These four types of processes can also occur in combination with each other. As I will show, the differentiation between them in the archaeological record is not always easy.

Deposition Contexts

Here I will discuss the various body treatments and formation processes of Iberian burials by deposition contexts.

Caves. The majority of cave burials (including rock shelters and rock fissures) have been found in central and southern Portugal (Beira Litoral, Alto Ribatejo, Estremadura, Peninsula Setúbal, Algarve), in north and northeastern Spain (Basque Country, Navarra, Catalonia), in the eastern part of the Southern Meseta (Madrid, Castile-La Mancha), in the eastern coastal region (Valenciana, Murcia, northern Almería), and in western Andalusia. The high number of individuals in caves, age and gender distribution, and the lack of elaborate grave goods suggest that from the beginning of the Early Neolithic through the Copper Age caves were the preferred burial places for the members of agricultural communities who lived in the surrounding areas. In some parts of the Iberian Peninsula (on the east coast, in the Basque region, in central Portugal), deposition of the dead in caves continues in the Bronze Age.

Since bones and artifacts in caves, especially in Late Neolithic and Copper Age contexts, are usually encountered in a very disturbed and messy condition, it is not easy to determine the original body treatment and formation processes in these places. One of the major problems of cave deposits concerns questions of whether bodies entered caves in the flesh and what caused disturbances of bones.

The Copper Age layer of the Pico Ramos cave in Biscay was associated with 11,410 fragmentary human remains belonging to 104 bodies. One individual located close to the cave entrance had been burned. Investigation of the burned skeletal remains (collarbone, thoracic vertebra, shoulder blade, cranial fragment, and radius fragment) showed that the fire had affected the corpse in a state of advanced decomposition (Baraybar and de la Rua 1995: 164–67; Zapata 1995: 51). Zapata (1995: 50) considers Pico Ramos as a place for sequential deposition of bodies in the flesh (process b) and attributes the burning to a post-depositional accident. However, I favor simultaneous deposition (or several episodes of simultaneous deposition) of corpses, which were brought to the cave from another place in different stages of decomposition (process c). The cave is too small to hold many bodies in the flesh; some body parts were still articulated, while other bones had been snapped in two in the middle; many long bones were missing; sherds belonging to one vessel and animal bones belonging to one animal were found in different parts of the cave and in different strata (Zapata 1995: 44–53).
Bones that belong to 13 individuals in the Copper Age, pre-Bell Beaker red layer of the Portuguese Lapa do Fumo (late fourth/early third millennium BC) were burned, cut, gnawed, and covered with ochre. According to Serrão and Marques (1971: 136–38), a fire had been set in a specially prepared part of the cave with disarticulated bones deposited on top. After the fire had died, the bones were covered with grave goods, among them schist plaques and bone objects. These artifacts were not burned. Afterwards the whole compound was sprinkled with red ochre. Ochre was found on top of burned bones, inside bone cracks, on charcoal, and on the objects. It is impossible to determine whether these bones had been reburied within the cave or were brought from somewhere else.

At Blanquizares de Lébor (Murcia, Spain), bones and lithic artifacts showed evidence of burning, whereas other objects were entirely unaffected by the fire (Arribas Palau 1952–1953). In Covacho de los Husos (Basque Country), the tip of a flint blade was found inside a cranium (Apellániz 1974: 134). It looks as if the stone tools were used to remove traces of flesh.

The analysis of osteological material from the cave surface of Algar do Bom Santo, Portugal (where at least 121 individuals were identified), reveals a clear dominance of cranial and long bone fragments, mainly femurs and tibias. No evidence for cutting and burning was detected. The bones date between the second half of the fourth and the third millennium BC (Duarte 1998b). Another possible sign for reburial of bones is a niche burial in the Cova das Lapas, which consisted of a cranium with the right and left heel from two different individuals, both leaning against the foramen magnum (Gonçalves 1999: 85). In the cave Algar do Barrão (end of the fourth millennium BC), bodies were brought into the cave from outside together with sediments after a phase of passive excarnation (Carvalho et al. 2003).

San Juan ante Portam Latinam is a rock shelter in the Ebro Valley, which was discovered during work to widen a road. The site, which has been dated to 3300–3000 BC, contained 338 individuals (Etxeberria and Herrasti 2007), some stacked on top of one another or jumbled up. Several people had been shot by arrows; some arrowheads were found embedded in the bones. Although the presence of fatal injuries in several bodies suggested a sort of communal grave that was filled quickly with bodies after a massacre, studies of the bones provided a different interpretation. Some individuals had died a violent death, and all bodies showing signs of fatal injury are male. However, some victims had survived their injuries. Radiocarbon dating points to a long-term use of this rock shelter by the local population. The tomb was at times emptied out, and bodies were removed and skulls stacked up together (Etxeberria and Herrasti 2007; Guilaine and Zammit 2005: 152–57; Kunst 2000; Vegas et al. 1999).

The state of the bones in some caves provides evidence that at least some prehistoric Iberian societies performed “secondary rituals” and rites of grave reentry as known from Indonesia, Melanesia, and other world regions (for example, Madagascar, North America; Bloch 1971; Hertz 1907; Hutchinson and Aragon 1999; Metcalf and Huntington 1991). Temporary deposition of the corpse as part of funerary ritual is common among many preindustrial societies (Brown 1995: 16). The bodies are not taken to their final burial place immediately after death, but are kept in storage either in the ground, in a tree, on a scaffold, or in the house. Once the corpses have decomposed, the bones are
gathered up, cleaned, and reburied in a place distinct from the storage place. Many years can pass between the death of an individual and reburial. These types of reburials are often collective, and corpses are in different stages of decay (Hutchinson and Aragon 1999). During these reburial ceremonies, the bodies are sometimes separated and treated differently. Among the eighteenth-century Nanticoke of Maryland, for example, bodies were first buried in the ground and then exhumed after a few months. Whereas long bones were wrapped in cloth and buried, the remaining bones (some probably still partially in the flesh) were burned and buried without wrappings (Feest 1997: 427).

On the other hand, some of the burns and cuts in the Iberian Peninsula could also result from active defleshing as part of mortuary treatment (Etxeberria 2000) or from reburial of much older bones without any connection to funeral rituals. Post-funeral re-location of much older bones could explain the messy dates in the Portuguese Gruta da Casa da Moura and in the Gruta dos Ossos. In Casa da Moura, Delgado found scraped and incised bones in Level 1a. Ceramics from Level 1a are predominantly of the Copper Age (Straus et al. 1988: 79), and a bone pin from the Delgado excavation was dated to 4600 ± 90 (OxA-5506) 3630–3040 2σ cal BC (Cardoso and Soares 1995). A human ulna, on the other hand, which was excavated from the same context during a newer excavation, provided a date of 5990 ± 60 BP (TO-953) 5192–4780 2σ cal BC, too old for the Copper Age (Straus et al. 1988: 70). In the Gruta dos Ossos, in the Alto Ribatejo, a similar discrepancy in the dates exist. The disarticulated bones from upper Levels I–III turned out to be much older than the articulated bones from the lower Level IV. Level I–III revealed two dates (bones, probably human): 4630 ± 80 (ICEN-465) 3633–3101 2σ cal BC and 4460 ± 110 (I-17368) 3500–2885 2σ cal BC; Level IV was younger: 3970 ± 140 (I-17248) 2880–2060 2σ cal BC (Carvalho et al. 2003: 117; Cruz 1997: 216).

Theoretically, some of these disarticulated “Copper Age” deposits could date to as late as the Early Bronze Age, as many caves were reused for the burial of new corpses. The rock shelter Covão d’Almeida (also known as Eira Pedrinha), Coimbra, Portugal, contained a 60-cm-thick layer that began approximately 1.5 m below the cave surface and was filled with the disarticulated human bones of almost 200 individuals (Corrêa and Teixeira 1949: 10–11). In some parts of this so-called “camada dos ossos,” ashes and burned bones were visible. Teixeira (Corrêa and Teixeira 1949: 12) attributes body disarticulation and the burning to post-depositional natural disturbance processes, although Corrêa (1949: 30) admits that the deposit could also have been an ossuary, that is, the deposition of disarticulated skeletal elements. Vilaça (1990: 109) favors the idea that, given its small size, the rock shelter served for the deposition of disarticulated bones, although in sector A’8 the deposition of articulated bodies could also have taken place. Based on the artifacts, the bone layer dates to between the Final Neolithic and the Copper Age. However, the entire deposit could also date to the Bell Beaker period (with reburial of older bones at the end of third millennium BC), since a Beaker sherd (not well contextualized) was encountered in the bone layer (Corrêa and Teixeira 1949).

Though most of the bones in Late Neolithic/Early Copper Age cave contexts were probably burned dry, the cremation of corpses in the flesh was also practiced. Abric de l’Escurrupenia (Valencia, Spain) was used as burial site at the end of the fourth millennium BC and contained 2044 fragments of remains from approximately 14 individuals
(children and adults) that had been burned while in the flesh. The degree of burning, which took place on a pyre outside the cave, was considerable, and around 40 percent of all bones had been burned at over 600° C. Pascual Benito (2002: 176) thinks that a catastrophic event, such as an epidemic or an accident led to this change in the treatment of the dead. Other explanations also exist. The use of cremation in this part of the Iberian Peninsula could point to the presence of different ethnic groups. Alternatively, we may be looking at the remains of social deviants. Perhaps the burning was an accident during the treatment of the corpse. The fire in the Abric de l’Escurrupenia centered on the trunk of the bodies. Since the more marginal regions of the corpse, such as the hand, foot bones, and skull had been burned less, it is also possible that the main goal was to carbonize the entrails (Weiss-Krejci 2005a).

HYPOGEA. Hypogea are artificial limestone caves. They are less frequent than and not as widely distributed as caves. Hypogea, which usually show up in clusters (four at Palmela, four at Monte Canelas, etc.) have been found in central and southern Portugal (Estremadura, Setúbal Peninsula, Algarve) as well as in southern, central, and northern Spain (Western Andalusia, Murcia, Toledo, and Navarra). They were predominantly used from the Late Neolithic to the Early Bronze Age (especially in Bell Beaker times in the Portuguese Estremadura).

In some areas, hypogea co-occur with caves. Like caves, hypogea usually contain a large number of disarticulated individuals (for example, Carenque 3 held over 150 bodies; São Pedro Estoril I held 100 people, etc.; Silva 1997: 243); unfortunately, the formation processes are equally ambiguous. According to Silva (1997), sequential deposition of individuals in the flesh was the predominant process in the hypogaeum of Monte Canelas 1 (Algarve, end of the fourth millennium BC; Parreira and Serpa 1995). The grave con-
sisted of two separate layers, divided by collapsed limestone. The lower layer (fig. 10.1), which precedes the upper layer by approximately a century, contained the remains of 147 individuals (97 adults, 50 subadults; bones covered with red ochre), the upper layer 24 bodies (12 adults, 12 subadults, no ochre). Like caves, Neolithic and Copper Age hypogea could have been burial locations for the members of entire communities, which were either deposited simultaneously or in a sequential order.

However, there exist two important differences between hypogea and caves: (a) Burned bones are lacking from hypogea. If burning of dry bones is indeed a sign for multistage burial rituals in caves, this could support the evidence that hypogea (at least the hypogea of Monte Canelas I) were used for the deposition of bodies in the flesh; (b) In comparison to caves, animal bones in hypogea are also rare (Weiss-Krejci 2006). Monte Canelas, for example, only held around 20 animal bones. Considering the frequent association of human remains with animal bones (deer, hares, rabbits, wild and domestic pigs, sheep, cattle, horses, dogs, reptiles, rodents, fish, and birds) in caves as well as in some other grave types, this is a rather small number. Some of these animal remains in caves and megalithic monuments are probably not simply remains of food but could have played a symbolic role in the reburial ritual. Rabbit and hares, in particular, often appear in combination with reburied and altered bones. Reburied bones of at least 27 individuals were associated with bones of rabbits (and ovicaprids) in the Cueva del Abrigo I de las Peñas (Palomar Macian 1982–1983: 132). Other examples include the Neolithic deposit P94 at Pirulejo, where human bones were mixed with bones of hare (Asquerino 1999: 34–37), and Cueva Sagrada I (Sánchez Carrasco 1987). Rabbits and hares may have served as symbols of birth and fertility. Small rabbit ornaments made from bone have been encountered in a variety of Copper Age caves, hypogea, and dolmens in Portugal (for example, Anta Grande do Olival da Pega, Cova da Moura, Cabeço da Arruda, Lapa do Bugio, Lapa do Suão; Cardoso 1992: fig. 17/10; Furtado et al. 1969: fig. 8/35; Leisner and Leisner 1951: 145).

MEGALITHIC TOMBS. In the Copper Age, a large number of bodies were interred in chambered tombs such as dolmens and tholoi. Tholoi, which were constructed in the third millennium BC, are less widely distributed than dolmen (see also García Sanjuán 2006: 155). They primarily occur in the Algarve, Alentejo, Extremadura, and Andalusia. Regarding the treatment of corpses in the Late Neolithic and Copper Age, several interesting differences between bodies in megalithic tombs and bodies in caves exist. Some megalithic tombs contained burned bones (in combination with a low number of bodies) that may have resulted from the treatment of a fresh corpse. Many years ago, Leisner and Leisner (1943: 546–47) suggested that megalithic tombs held artificial mummies (for example, seated bodies in the Dolmen de Soto 1), and that small fires in the tombs promoted the dehydration process since many tombs have hearths (see Rojo and Kunst 2002).

I think this idea is plausible and worthy of future consideration to explain some finds in prehistoric Iberia. Like secondary ritual, dehydration (mummification) of corpses was also a frequent practice in preindustrial societies all over the world (Aufderheide 2003). The Bangala from the Upper Congo eviscerated and smoked bodies in order to display them in huts for some time before final deposition. The Muiscas of Precolonial
Colombia also mummified the bodies of the dead by suspending them above or between fires (Aufderheide 2003: 35, 50). In ancient Mesoamerica, seated corpses were sometimes dehydrated in front of a fire, leaving charred skulls and leg bones behind (Sempowski 1994: 142–44). Two skeletons, which once were mummies, have recently been detected at the Bronze Age settlement of Cladh Hallan, Scotland. The body parts had been curated for several hundred years before being deposited under the primary floor of a house. One body, which appeared as an articulated corpse, was composed of bones from three different individuals (Parker Pearson et al. 2005).

Smoking and dehydration of corpses in prehistoric Iberia could have taken place long before deposition. There may be some evidence for smoked corpses in the Anta Arquinha da Moura, Portugal. Silva (1995: 142) identified three femur fragments, which had been exposed to heat while still in the flesh. The number of individuals in the Anta Arquinha da Moura was low. There were around seven adults and one subadult (Silva 1995: 143). Among many special grave goods, 400 arrowheads and a gold leaf were found. The orthostats are painted (Cunha 1993, 1995: 136–39). For comparison, in the Dolmen de Soto there were also eight individuals (one was a child), and the orthostats are engraved. If the Leisners are right and certain tombs (the more elaborate ones) of Copper Age Iberia were deposition places for a few individuals who had been desiccated, these bodies could belong to members of a special stratum of society, such as the elite.

At Los Millares, bones were burned in 13 tombs, a few more tombs held ashes and remains of fire, and the rest (approximately 60) showed no evidence for fire (Almagro and Arribas Palau 1963). Unfortunately, we know very little about the corpses in these tombs, such as whether bones were burned green or dry and the specific deposition processes (fig. 10.2).
The deposition processes of corpses in megalithic tombs are probably as variable as those in caves. Sequential deposition of bodies and disturbance of older bones by younger bodies, rituals of commemoration and visits, sporadic reuse, exhumation, and the deposition of older bones from elsewhere all form plausible scenarios. The reburial of bones older than the monument, for example, could explain a very early fifth-millennium-BC date on a bone in the Dolmen de Azútán (Bueno Ramírez 1991: 57). This individual was probably dead long before the monument came into existence, whereas the other individuals in the tomb had died after the construction of the monument. This find clearly implies that dates of human bones should not be used to date the initial construction of a tomb. Monument 1 of Perdigões, a tholos tomb from the Alentejo, contained large amounts of what looks like reburied bodies (Duarte 1998a). The bones were neither cut nor burned. Burned bones are absent from all Alentejo and Spanish Extremadura tholoi.

SETTLEMENTS. Depositions of human remains in Copper Age settlements and the many isolated finds of human bones (often intermixed with animal bones) suggest that the living and the dead were in close physical relation to each other before the Early Bronze Age (Alcázar Godoy et al. 1992). Burials below habitations were discovered at Polideportivo de Martos (fig. 10.3), a site dating from the late fourth millennium BC (Lizcano et al. 1991–1992); deposits with human remains as well as isolated human bones without associated graves are known from a variety of Copper Age Portuguese walled enclosures (for example, Castelo Velho, Leceia, Zambujal; Cardoso 1994; Jorge et al. 1998–1999) and settlements of Andalusia (for example, La Cima, La Gallega in Sevilla; El Prado de Jumilla in Murcia; Alcázar Godoy et al. 1992; Lilio Carpio and Walker 1987). At the unwalled Copper Age settlement of El Prado (Jumilla, Murcia), human bones were found in all excavated sectors (Lilio and Walker 1987). They were mixed with the much more numerous faunal remains and were not enclosed in any special structure. All larger bones were missing, and the proportion of human bones is very small in comparison with animal bones. Many more bones have been found at walled enclosures of the Portuguese
Estremadura. Usually these bones are mixed (and therefore registered and collected) together with animal bones (Duarte, personal communication).

Structure E.R. in the Copper Age walled enclosure Castelo Velho, in northern Portugal, contained a deposit of eight to eleven fragmentary individuals of different age and sex groups. Some of the bones had been burned, cut, and gnawed, and the majority of body parts, such as the heads of the adults, were missing. One body was still partially articulated (Antunes and Cunha 1998). Although the bones have not been dated, I think that this indicates a process of temporary storage of several individuals above the ground (which would explain the gnawed bones) and a one-time redeposition (after processing) of some of the bones into Structure E.R. A similar deposit was excavated at the site of Leceia in Structure II (Cardoso 1994). Like Structure E.R., Structure II is a round stone structure that dates to the second part of the third millennium BC. In Structure II, only remains of heads were present. Seventeen skull fragments, 18 teeth, and one atlas or axis from three adult males had been deposited together with “domestic waste.” Although burns or cuts are not present on the bones, the presence of the first or second vertebra indicates that at least one head was severed from the corpse. Unfortunately, no date for these bones has been published. Cardoso (1994: 143) interprets the individuals as attackers who had been killed and who did not deserve a funeral and were therefore discarded in the garbage. I think that Structure II is not a garbage bin but a mortuary structure that held the remains of “important” people. Unfortunately, there exists no artifactual evidence to corroborate this theory, since the associated artifacts have not been published.

The southeastern Bronze Age (or El Argar culture, ca. 2250–1500 BC) exhibits a drastic change in burial patterns from the preceding Copper Age (Los Millares Culture). The standard Argaric grave (cists, pits, covachas, and urn deposits) is individual, although a few multiple burials have also been found (fig. 10.4). Argaric graves are usually located within settlements and beneath house floors or embedded in the walls of domestic structures (for example, Aranda and Molina 2006; Castro Martínez et al. 1993–1994; Chapman 2005). At Gatas, some multiple depositions (with two and three bodies) are those of children, of children and adults, and of two adults (a male and female). Recent AMS dating of Argaric double graves has shown that multiple depositions of adults do not represent individuals of one generation but people who lived and died at least one century apart (Castro et al. 1995). This implies that the graves were either reused by later generations, or that we are looking at simultaneous depositions of people who were stored or curated
until their final disposal. Reuse is suggested at Gatas (Lull 2000), and evidence for simultaneous deposition of one adult and a child comes from El Castellón Alto.

The site of El Castellón Alto, which is located in the municipality of Galera, dates to about 1900–1600 BC. Burial 121 was found under a house floor. It contained the strongly flexed, mummified, and wrapped corpse of one adult in his late 20s. Skin and hair (even the beard) were still present. The accompanying child was still partially articulated and mummified. Four ceramic containers, copper bracelets, silver rings, one axe, and animal remains were also found in the tomb. According to Botella (personal communication; Molina et al. 2003) the child had died earlier, but was exhumed from somewhere else (still partially articulated), put into a bag, and reinterred with the adult.

This mummy find has important implications for Argaric multiple graves. At Cerro de la Encina, Tomb 21 held three articulated bodies, which look like bundles. Aranda and Molina (2006) regard this burial as a simultaneous deposition of individuals who lived and died together. Theoretically, these bodies could also be the remains of people who had lived at different times (as at Gatas) and were stored or kept in different places until collective final deposition in Tomb 21. Hence, Aranda and Molina’s assumption of familial relationship between individuals in graves at Cerro de la Encina could be wrong. The lack of dates for the Cerro de la Encina bones constitutes a serious problem for this interpretation as well as other reasons. The authors claim that the bones represent evidence for social variation between tombs of the western sector and the central sector of Zone B. However, these differences may be chronological; the site was occupied without interruption from 2000 to 1450 BC.

Discussion

As Brown (1995: 4–5) noted, the advantages of individualized mortuary analysis make us forget that collective burials once were more common than they are today. Collective burial contexts in prehistoric Iberia are incredibly complex and variable. For these reasons, I suggest that corpses in “collective” contexts are not necessarily a sign of communalism and a lack of individualism or vice versa. People are always treated individually when they die. Corpses are dressed, painted, wrapped, defleshed, dehydrated, etc. After being treated, bodies usually are either stored or deposited. Some people are deposited into graves that hold no other bodies, others are buried in tombs which hold people who died earlier. Irrespective of whether the corpse is put into a single grave below the house floor or into a large collective tomb, it is still recognized and mourned for as a specific person (see Bloch 1971). The difference between individual and collective deposition in prehistory does not reflect difference between communalist and individualistic people.

Thomas (2002:39–40) discusses this problem for Neolithic Britain:

Unfortunately, because in the later Neolithic and early Bronze Age the funerary record is dominated by single graves with bodies containing grave goods, it has proved possible for some archaeologists to imply that this horizon saw “the birth of the individual” in the contemporary sense … According to these arguments, these were people just like us (Thomas 2002: 39).
What really makes a difference between our modern society and many preindustrial people are the long-term relationships in which the living and the dead engage with each other. In prehistory, the dead were an integral part of society, and there are many ways and forms in which this relationship could be expressed.

Overall, the attitudes towards the dead between the Neolithic, Copper Age, and the Bronze Age seem less clear-cut when one carefully examines the evidence. Body storage and curation of bones was practiced in the Neolithic and the Copper Age, but as the examples from Argaric sites show, this may have also been the case in the Bronze Age. Remains of some dead bodies have been recovered in Neolithic and Copper Age settlements, suggesting that dead bodies were present in settlements before the Bronze Age. And although Bronze Age people buried their dead in new types of graves, they also reused collective tombs of earlier time periods.

Additionally, in certain contexts, the dichotomy between “individual” and “collective” may simply result from the formation processes of a burial site. As already mentioned, caves were used for the deposition of corpses in Bell Beaker times and in the Early Bronze Age in several parts of the Iberian Peninsula. Corpses appear more individualized (protected by stones, set apart, and so on). Cueva de Gobaederra, for example, contained at least 67 individuals, many disarticulated, burned, and mixed with ashes (probably all dating to the Copper Age). Two individuals (probably dating to Bell Beaker times) were articulated and extended on their backs (fig. 10.5). They had been deposited in the center of the cave; one of them was covered by a cattle skull (Apellániz et al. 1967). The fact that only the latest burials are individualized does not imply that earlier ones originally were not deposited the same way. The individualized Bell beaker burials are only the last in a long sequence of deposition. I want to illustrate this process using a historic example from Europe.

According to mortuary records, 4,000 people — mostly lower nobility and employees of the Imperial court — were buried individually in coffins in the subterranean burial vault of St. Michael’s Church in Vienna between AD 1630 and 1784. Excavations carried out in the 1950s showed that in some parts of the vault at least two times in the past older coffins had been intentionally destroyed and buried in the ground. Each time — proba-
bly once in the seventeenth and once in the eighteenth century — the bones and remains of clothing were covered by a layer of sand and clay. There exists a written protocol, which states that during in the eighteenth century the crypt floor was raised by 1.5 m. Today, a visitor to the subterranean vault of St. Michael’s will only see the remaining “individualized” coffins, but stands on the invisible, intermingled fragmentary and collective remains of thousands of corpses all tightly packed into the ground in several layers (Rainer 2005: 30).

There exist many ethnographic and historic examples of collective burials that illustrate the various formation processes and meanings of these types of graves (for example, Bloch 1971). Specific types of collective graves, especially elaborate tombs, are known to hold members of noble houses. The example of European aristocratic tombs has been used by Kunst (1995) to support the argument that Iberian societies were already stratified by the Early Copper Age, a view which is shared by Lacalle (2000). Lillios’ investigation of Copper Age slate, schist, and sandstone plaques deriving from mortuary contexts also points in this direction. Lillios (2004) considers the plaques as genealogical mnemonics that were consulted for ritual and social decisions when collective burials were revisited episodically.

The Mummy Problem

Cunha originally thought that Anta Arquinha da Moura held “secondary” burials, since skulls had been deposited on one side of the chamber and long bones on the other (Cunha 1993: 85; 1995: 135). Silva (1995), who analyzed the bones, considers this as a site where individual sequential deposition of bodies in the flesh took place. This conclusion is based on the presence of many small bones (foot bones, a shoulder blade, and collar bone) in the tomb. To Silva, the sorting of bones is the result of making room for new bodies. However, the possible existence of mummies in this specific tomb (buried sequentially or simultaneously) could have severe implications. Silva used skeletal completeness and the presence of many small bones as evidence for burial in the flesh. Small bones can also belong to bodies that once were mummies. If dried skin and hair do not survive in the archaeological record, a corpse that was once a mummy may simply look like a “primary burial” because most bones are present; some may even remain in proper anatomical position. Mummies and mummy parts constitute a serious methodological problem (as in some of the Argaric graves). They can be moved around as articulated bodies and be redeposited many times, as was the case in the Inca Empire (D’Altroy 2002: 97).

Tomb Reuse

Another phenomenon that has also seriously been underestimated is the reuse of older tombs in the Early Bronze Age (see also García Sanjuán, this volume). Chapman (2005) has recently suggested that older megalithic monuments may have served as grave sites for some members of Bronze Age populations. This idea is based on the investigation of dead bodies from the Argaric site of Gatas, where a series of bones were dated and care-
ful investigation by physical anthropologists was carried out. At Gatas, not all the dead were actually disposed of within the settlement. Prior to 1900 BC, mainly adults were buried, and it seems that infants and children were deposited elsewhere or received mortuary treatment that left no trace. Between 1700 and 1500 BC, on the other hand, more children than adults are present. Adults between the ages of 20 and 40 years are scarce throughout the occupation of Gatas. Hence, the burial population of Gatas does not reflect a real population. Chapman (2005) thinks that some of these missing adult bodies could have been deposited in megalithic tombs, both in the coastal and interior areas.

It is possible that through the reuse of megalithic monuments Bronze Age people were able to establish symbolic ties with long vanished, elite corporate groups. Indeed, the use and reuse of tombs in prehistoric Iberia may have served a similar purpose as in other parts of the world. In Europe, reuse of dynastic tombs and the choice of specific burial locations often helped to legitimize power and claims to territories (Weiss-Krejci 2005b). Maybe some Bronze Age individuals also needed political legitimization. As land became a basic means of production, the dead were increasingly linked to the land (Hernando Gonzalo 1997: 89).

There certainly exists a relationship between burial monuments and land use. In the Austronesian world, the association between a corpse and the other ancestors in the tomb serves as a basis for defining kinship groupings (Waterson 1995) and claims to property and land. Among the Sădan Toraja of highland South Sulawesi, members of a descent group (tongkonan, the house) have the right to be buried in the collective house tomb (liang), which is often referred to as “the house of the ancestors.” If a body is placed in the “wrong” tomb, that is, in a tomb where it has no right to be, years later the body may be retrieved and placed in its own family liang (Waterson 1995: 208–10). Burial in the wrong tomb may eventually lead to improper claims to social position, land, and property by the descendants.

Violence and Warfare

Body processing as well as exhumation and reburial are probably responsible for the disarticulated and broken state of Neolithic and Copper Age bones. However, violent death and mutilation is also a distinct possibility for some of the dismembered corpses. The proposed rationales (for example, see Cardoso 1994: 143 for Leceia) for their creation have been simplistic with regard to why the violence would be expressed in such a way. At present, there exists little data to support such ideas. Unequivocal osteological evidence for trauma caused by weapons and evidence for violent death have been recovered only from a few contexts, predominantly located in the northeastern part of the Iberian Peninsula: the dolmen of Collet Su, Cova H. De Arboli, Hipogeo de Longar, the rock shelter San Juan ante Portam Latinam, San Quirce del Valles, and the burial pit of La Atalayuela (Armendáriz et al. 1994; Etxeberria and Vegas 1992; Kunst 2000: 131; Vegas et al. 1999). These injuries, which were responsible for the death of at least some of the buried individuals, have been interpreted as the outcome of interpersonal violence and warfare.

Otherwise, osteological evidence for interpersonal and communal violence is scant (Silva 2005; Silva and Marques 2010). Many archaeologists interpret walled enclosures,
such as the sites of Los Millares in Andalusia and Zambujal and Leceia in Portugal, as evidence for people’s concern for adequate protection (Fernández Castro 1995: 17–23, 48–50; Guilaine and Zammit 2005: 188–90; Monks 1997, 1999). However, some archaeologists have suggested a ritual role for walled enclosures (Jorge 2002).

For yet unexplained reasons, the issues of violence and warfare have only started to play some role in the recent past. Most Iberian archaeologists even consider the burning of entire mortuary structures on the Northern Meseta and in Navarra (La Peña de la Abuela, El Miradero, Tumulo de la Sima, and Tres Montes) as the result of ritual behavior (see Rojo and Kunst 2002 and articles therein). However, the nature of these fires remains ambiguous, and violence in the form of deliberate hostile destruction should not be ruled out. There exist many historical examples which show that one form of imposing violence on the living is to destroy the remains of their dead (Weiss-Krejci 2005b). Unless entirely covered up, many of the tombs above the ground would have been easy targets for enemies.

Many of the problems raised in this chapter cannot be answered at present, and many more questions come to mind. Can we detect regional and chronological patterns regarding the pattern of secondary deposition? How do we explain the parallel use of different types of graves within the same area? Do variable mortuary practices reflect social differences or ideological differences and varying attitudes towards the dead? Do burial sites hold representative samples of prehistoric populations, or are we missing entire segments of society? Can we identify ethnic groups in the Iberian Peninsula? Future research may be able to address some of these questions.

Acknowledgments

This research was funded by the Portuguese Science Foundation (FCT project SFRH/BPD/8608/2002). I would like to thank all the people involved in the organization of the Obermann conference, both staff and students of the University of Iowa. It was a wonderful experience. My special thanks go to Katina Lillios who has also made valuable comments on this chapter and has been incredibly patient throughout the editing process.

References

Apellániz, J.M.

Apellániz, J.M., A. Llanos, and J. Fariña

Aranda, G., and F. Molina

Armendáriz, A., S. Irigarai, and F. Etxeberria

Arribas Palau, A.

Asquerino, M.D.

Aufderheide, A.C.

Baraybar, J.P., and C. de la Rua

Bloch, M.

Brown, J.A.

Bueno Ramírez, P.

Cardoso, J.L.

Cardoso, J.L., and A.M. Monge Soares

Carr, C.

Carvalho, A.F., N. Antunes-Ferreira, and M.J. Valente

Chambon, P.
Chapman, R.W.

Corrêa, A.M.

Corrêa, A.M., and C. Teixeira
1949 *A jazida pré-histórica de Eira Pedrinha.* Publicações do Serviço Geológico de Portugal, Lisbon.

Criado Boado, F.

Cruz, A.R.

Cunha, A.L. da

D’Altroy, T.N.

Delibes de Castro, G., J. I. Herrán Martínez, J. de Santiago Pardo, and J. del Val Recio

Díaz-Andreu, M.

Díaz del Río, P.

Díaz del Río, P., and L. García Sanjuán (eds.)

Duarte, C.

Duday, H.
Etxeberria, F.

Etxeberria, F., and Herrasti Maciá, L.

Etxeberria, F., and J.I. Vegas

Feest, C.F.

Fernández Castro, M.C.

Furtado, A., A. da Silva Maurício, V. Côrtes, and J. de Almeida Monteiro

García Sanjuán, L.

Gilman, A.

Gilman, A., and J.B. Thornes

Gonçalves, V.S.

Guilaine, J., and J. Zammit

Hernando Gonzalo, A.

Hertz, R.
1907 Contribution à une étude sur la représentation collective de la mort. Année Sociologique 10: 48–137.

Hutchinson, D.L., and L.V. Aragon
2002 Collective Burials and Community Memories: Interpreting the Placement

Serrão, E. da Cunha, and G. Marques

Silva, A.M.

Silva A.M., and R. Marques

Straus, L.G., J. Altuna, M. Jackes, and M. Kunst
1988 New Excavations in Casa da Moura (Serra del Rei, Peniche) and at the Abrigos de Bocas (Rio Maior), Portugal. *Arqueologia* 18: 65–95.

Thomas, J.

Vegas, J.I., A. Armendáriz, F. Etxeberria, M. Fernández, L. Herrasti, and F. Zumalde

Vilaça, R.

Waterson, R.

Weiss-Krejci, E.

Zapata, L.