
1

Interpreting vs. compiling

In order to tell a computer what to do, we have to
communicate with it. Usually we first write a list of
commands (a computer program) in a high-level
programming language (such as C or S), and then use a
compiler or interpreter to translate the commands into
machine code.

A compiler translates a complete program in one go
and produces a machine code program which we can
run and re-run any time we want.

An interpreter, on the other hand, reads, translates,
and immediately executes the commands one by one. If
a command is encountered multiple times (for example
in a loop), it has to be translated each time. Interpreted
programs run therefore generally much slower than
compiled programs.

Programs written in C are compiled and programs
written in S are interpreted. R is a free interpreter for S
and S-PLUS is a commercial interpreter for S.

R can be downloaded from www.r-project.org.

After the installation of R, it can be started by double-
clicking on the R icon.

Prospective R users must prepare for typing commands
instead of clicking on menus and dialog boxes.

Using R as a calculator

To evaluate the expression 912)sin(3
2 −−π type

sin(pi/2)-2^3*abs(1-sqrt(9))

directly into the R Console at the prompt > and press
Enter.

R immediately executes the command, prints
[1] -15,1

and waits for the next command.

1 The result -15 is preceded by the counter [1]. The inclusion of
counters will turn out to be helpful when longer output is printed

2

Assignments

If you want to save the value of an expression evaluated
by R, you need to store it into a variable.

The assignment

x <- pi/4

first evaluates the expression 4
π and then passes the result

to the variable x. It does not print the result. If you want
to see the value stored in the variable x, just type its name.

Choose variable names with care. If you choose short
names such as x, y, or z, nobody will be able to guess
what they are used for. On the other hand, really long
names such as pi.divided.by.4 , pi_divided_by_4, or
piDividedBy4 are much harder to read and also much
harder to write.

Using the variable x created by the assignment

x <- pi/4

we can evaluate the expression

)(cos)(sin 4
2

4
2 ππ +

by entering the command

(sin(x))^2+(cos(x))^2.

Note: Putting one space before and after <- is not
necessary, but it improves readability.

3

Vectors

Vectors can be constructed with the concatenate
function, c.

> c(0.1,-2.2,5,8.8)
[1] 0.1 -2.2 5.0 8.8

More regular vectors can also be obtained with the
sequence function, seq.

> seq(2,10,by=2)
[1] 2 4 6 8 10

> seq(2,-3.5,by=-0.5)
[1] 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5

> seq(1,10,by=1)
[1] 1 2 3 4 5 6 7 8 9 10

If the increment is 1 or -1, a shorthand for seq is
to use the colon, :.

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

A subvector is obtained by giving the name of the
vector followed by an index vector in square
brackets.

> v <- c(-2,12,0,7,-1,867)
> v[c(1,3,5,6)]
[1] -2 0 -1 867

> v[1:3]+100*c(0,1,2)
[1] -2 112 200

4

Matrices

Vectors can be bound together into matrices, either
row by row or column by column.

> rbind(2:4,10:12)
 [,1] [,2] [,3]
[1,] 2 3 4
[2,] 10 11 12

> cbind(2:4,10:12,c(-7,8,3),10*c(1,2,4),3:1,(3:1)^2)
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2 10 -7 10 3 9
[2,] 3 11 8 20 2 4
[3,] 4 12 3 40 1 1

The indexing of matrices is analogous to that of
vectors.

> X <- rbind(1:5,seq(10,50,10))
> X
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 10 20 30 40 50

> X[2,3:5]
[1] 30 40 50

> X[1,4]
[1] 4

> X[,4]
[1] 4 40

> X[1,]
[1] 1 2 3 4 5

5

Data frames and lists

The columns of a matrix must be of the same length and
the same type. In contrast, the elements of a data.frame
do not have to be of the same type. For example, an
object with names (type: character) in the first column
and values (type: numeric) in the other columns is a
data.frame, but not a matrix.

> index <- c("DJI","FTSE 100","NIKKEI 225")
> n.cmpn <- c(30,100,225) # number of components
> cl <- c(10520.32, 5260.99, 10695.69) # close prices
> F <- data.frame(index,n.cmpn,cl)
> F
 index n.cmpn cl
1 DJI 30 10520.32
2 FTSE 100 100 5260.99
3 NIKKEI 225 225 10695.69

The elements of a list can have different lengths as well
as different types.

> day <- "May 06 2010"
> L <- list(day,F)

The elements of a list can be referenced using
double square brackets.

> L[[1]]
[1] "May 06 2010"

> L[[2]][3,2]
[1] 225

6

Plotting data

> x<-1:10; y<-x^2; plot(x,y) # create x,y, plot y vs. x

Note: (i) Commands that are typed into the same
line must be separated by a semi-colon, ;.
(ii) Comments must be preceded with the number sign, #.
Everything to the right of this symbol will be ignored.

> plot(x,y,col="red") # plotting color = red
> plot(x,y,type="l") # plot a line instead of points
> plot(x,y,type="o") # points and line overplotted
> n <- 100
> x <- (1:n)/n # if x already exists it is overwritten
> y1 <- x; y2 <- x^2; y3 <- x^3
> plot(x,y1,type="l",ylab="") # no Y axis label
> title("Powers of x") # add a title to the plot
> lines(x,y2,lwd=2) # add a line with line width = 2
> lines(x,y3,lwd=3) # add a line with line width = 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Powers of x

7

Batch processing

Commands can be typed into the R Console and
executed immediately by pressing Enter. Alternatively,
a sequence of commands can be assembled into a text
file and then be executed in batch mode.

For example, we may first create a working directory
C:\Projects\Powers and then use a simple text editor to
store all the R commands

n <- 100; x <- (1:n)/n; y1 <- x; y2 <- x^2; y3 <- x^3
plot(x,y1,type="l",ylab="") # no Y axis label
title("Powers of x") # add a title to the plot
lines(x,y2,lwd=2); lines(x,y3,lwd=3)

on an external file, say plot.txt, in the working
directory.

Next we start R, enter the command

setwd("C:/Projects/Powers") # R uses / instead of \

to set the R working directory to C:\Projects\Powers,
and finally execute the stored commands with the
command

source("plot.txt") # read, analyze (parse), evaluate

or simply with copy and paste.

It is often reasonable to carry out preliminary analyses
interactively and to produce the final results in batch
mode to guarantee full reproducibility.

8

Getting help and quitting

If you get stuck, you should first interrupt the current
operation by pressing Esc and then get help. The
command help() starts the R help facility.

If you know the name of a specific function, for
example plot, you can get information on this function
by entering help(plot).

When you terminate an R session by entering the
command quit() or via the File menu, you are asked
whether you want to save the objects that you have
created during that session. If your answer is Yes, R
writes all objects to a workspace file called .RData in
the current working directory. The workspace can be
reloaded in later R sessions by first selecting the
working directory and then entering load(".RData").

