Let y_{1}, \ldots, y_{n} be a time series obtained by measuring a variable (e.g., the real US GDP) once in each of n sequential time periods $t_{1}, t_{2}, \ldots, t_{n}$.
Formally, we regard this time series as a function

$$
y:\left\{t_{1}, \ldots, t_{n}\right\} \rightarrow \mathbf{R}
$$

that assigns for each $i \in\{1, \ldots, n\}$ the real number y_{i} to the time period t_{i}. The set $T=\left\{t_{1}, \ldots, t_{n}\right\}$ is called the domain of the time series.

Time series operators transform one or more time series into a new time series. A simple example is the multiplication operator, which transforms a time series y with domain T into a new time series $\lambda \cdot y$ with the same domain by multiplying each value of y by a constant λ, i.e.,

$$
(\lambda \cdot y)(t)=\lambda \cdot y(t) \quad \forall t \in T
$$

Example:

y	$10 \cdot y$
$2013 \rightarrow 5.4$	$2013 \rightarrow 54$
$2014 \rightarrow 5.5$	$2014 \rightarrow 55$
$2015 \rightarrow 5.8$	$2015 \rightarrow 58$

The addition operator and the subtraction operator transform two series x and y that are defined over the same domain T into new time series $x+y$ and $x-y$, respectively:

$$
\begin{aligned}
& (x+y)(t)=x(t)+y(t) \quad \forall t \in T, \\
& (x-y)(t)=x(t)-y(t) \quad \forall t \in T .
\end{aligned}
$$

Example:
x
y
$x+y$

$$
\begin{array}{lll}
2013 \rightarrow 3.3 & 2013 \rightarrow 5.4 & 2013 \rightarrow 8.7 \\
2014 \rightarrow 3.0 & 2014 \rightarrow 5.5 & 2014 \rightarrow 8.5 \\
2015 \rightarrow 3.1 & 2015 \rightarrow 5.8 & 2015 \rightarrow 8.9
\end{array}
$$

The lag (or backward shift or backshift) operator is denoted by L (or by B). It shifts a time series so that the shifted time series lags one time unit behind, i.e.,

$$
(L y)(t+l)=y(t) \quad \forall t \in T
$$

Example:

Ly
$2013 \rightarrow 5.4$
$2014 \rightarrow 5.5 \quad 2014 \rightarrow 5.4$
$2015 \rightarrow 5.8 \quad 2015 \rightarrow 5.5$
$2016 \rightarrow 5.8$

If the domain of y is finite, it cannot be equal to the domain of $L y$. For example, if y has domain $\{2013,2014,2015\}, L y$ has domain $\{2014,2015,2016\}$.
Whenever y and $L y$ do not have the same domain, it is not possible to define $y+L y$ or $y-L y$. To resolve this problem, we will henceforth assume that all time series have domain

$$
\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

The n observed values are viewed as a finite segment of a doubly infinite series.

Manipulating the lag operator

Indicating the double application of L by L^{2}, we have

$$
\left(L^{2} y\right)(t)=(L(L y))(t)=(L y)(t-1)=y(t-2)
$$

In general,

$$
\left(L^{k} y\right)(t)=y(t-k)
$$

If $k<0$, the direction of the shift is reversed. For example,

$$
\left(L^{-4} y\right)(t)=y(t+4) .
$$

The operator L^{-1} is called lead operator.

Example:

$L^{-1} y$	y	$L y$	$L^{2} y$
\vdots	\vdots	\vdots	\vdots
$2012 \rightarrow 5.4$	\vdots	\vdots	\vdots
$2013 \rightarrow 5.5$	$2013 \rightarrow 5.4$	\vdots	\vdots
$2014 \rightarrow 5.8$	$2014 \rightarrow 5.5$	$2014 \rightarrow 5.4$	\vdots
\vdots	$2015 \rightarrow 5.8$	$2015 \rightarrow 5.5$	$2015 \rightarrow 5.4$
\vdots	\vdots	$2016 \rightarrow 5.8$	$2016 \rightarrow 5.5$
\vdots	\vdots	\vdots	$2017 \rightarrow 5.8$
\vdots	\vdots	\vdots	\vdots

The lag operator is linear, i.e.,

$$
L(x+y)=L x+L y
$$

and

$$
L(\lambda \cdot y)=\lambda \cdot(L y)
$$

This follows from

$$
\begin{aligned}
L(x+y)(t) & =(x+y)(t-1) \\
& =x(t-1)+y(t-1) \\
& =(L x)(t)+(L y)(t) \\
& =(L x+L y)(t)
\end{aligned}
$$

and

$$
\begin{aligned}
(L(\lambda \cdot y))(t) & =(\lambda \cdot y)(t-1) \\
& =\lambda \cdot y(t-1) \\
& =\lambda \cdot(L y(t)) \\
& =(\lambda \cdot(L y))(t) .
\end{aligned}
$$

The differencing operator Δ is defined by

$$
\Delta y=y-L y .
$$

The repeated application of Δ is indicated by Δ^{k}, e.g.,

$$
\begin{aligned}
\Delta^{2} y & =\Delta(\Delta y) \\
& =\Delta y-L(\Delta y) \\
& =(y-L y)-L(y-L y) \\
& =y-L y-L y+L^{2} y \\
& =y-2 L y+L^{2} y
\end{aligned}
$$

Exercise: Show that $\Delta^{3} y=y-3 L y+3 L^{2} y-L^{3} y$.

It will turn out to be very convenient to write an expression such as

$$
y-3 L y+3 L^{2} y-L^{3} y
$$

in the form

$$
\left(1-3 L+3 L^{2}-L^{3}\right) y
$$

where 1 denotes the identity operator L^{0}, which does not have any effect. Expressions like

$$
1-3 L+3 L^{2}-L^{3}
$$

are called lag operator polynomials.
Example: $\Delta y=y-L y=(1-L) y$
Manipulating lag operator polynomials in the same way as polynomial functions we can "solve" the last exercise immediately:

$$
\begin{aligned}
\Delta^{3} y & =(1-L)^{3} y \\
& =\left(1-3 L+3 L^{2}-L^{3}\right) y \\
& =y-3 L y+3 L^{2} y-L^{3} y
\end{aligned}
$$

Exercise: (i) Show that the approximation of the nonlinear function $g(r)=\log (1+r)$ obtained by using the first two terms of its Taylor series is given by the linear function $f(r)=r$.
(ii) Use R to sketch $f(r)$ and $g(r)$ for $-0.1 \leq r \leq 0.1$.

Let y be a time series with domain \mathbf{Z}. The quantity

$$
R(t)=\frac{y(t)-y(t-1)}{y(t-1)}
$$

is called the return (or growth rate) from time $t-1$ to time t.

For a small return $R(t)$ we have

$$
R(t) \approx \log (1+R(t))=\log \left(1+\frac{y(t)-y(t-1)}{y(t-1)}\right)=\log \left(\frac{y(t)}{y(t-1)}\right)
$$

The quantity

$$
r(t)=\log \left(\frac{y(t)}{y(t-1)}\right)=\log (y(t))-\log (y(t-1))
$$

is called \log return.

Exercise: Compare R and r for the \log GDP.

- Create a times series object Y.ts and use the function lag, which is well defined for time series objects (but unfortunately acts like a lead operator), to calculate R.
> Y.ts <- ts(Y,start=1946)
$>\mathrm{R}<-(\mathrm{Y} . t s-\operatorname{lag}(\mathrm{Y} . t \mathrm{ts}, \mathrm{k}=-1)) / \operatorname{lag}(\mathrm{Y} . t \mathrm{ts,k}=-1)$
\# lead operator: $k=1$, lag operator: $k=-1$
- Calculate the differences of the log GDP.
$>$ y.ts <- ts(y,start=1946)
$>\mathrm{r}<-\mathrm{y} . \mathrm{ts}-\operatorname{lag}(\mathrm{y} . t \mathrm{ts}, \mathrm{k}=-1)$
- Plot R and r.
> plot(R,type='"l',xlab='" ',ylab='"',col='green",lwd=2) \# double line width
> lines(r,col="red")

There is practically no difference between R and r.

