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Trigonometric functions in discrete time:                sin )( 2 tpπ                       cos )( 2 tpπ  
Clearly,  g(t)=cos( 22π t)=cos(π t)=(-1)t is the most rapid oscillation we can observe.  The frequency π (one half a cycle per sampling interval) is known as Nyquist frequency.     

If one observation is sampled per unit of time, a periodic function with period n completes one full cycle in the observation period, a periodic function with period n/2 completes two full cycles in the observation period, etc. In general, a periodic function with period n/k completes k full cycles in the observation period. The frequency ωk=2πk/n that is associated with the period n/k is called the k-th Fourier frequency.   We consider only those Fourier frequencies ωk that are less than or equal to the Nyquist frequency π, i.e., k≤m=[n/2].  If the improper Fourier frequency 2π 0/n=0 is also included, there are always n non-vanishing sines and cosines.   If n is even and m=n/2, we have     1, cos( tnπ 12 ⋅ ), …, cos( tnmπ⋅2 ), sin( tnπ 12 ⋅ ), ..., sin( tn )(m-π 12 ⋅ ). If n is odd and m=(n-1)/2, we have 1, cos( tn 12 ⋅π ), ..., cos( tnm⋅π2 ), sin( tn 12 ⋅π ), …, sin( tnm⋅π2 ). Note that cos( tnπ 02 ⋅ ) equals 1 and sin( tnπ 02 ⋅ ) vanishes. If n is even, then sin( tnmπ⋅2 )=sin(π t) vanishes too.  
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Exericse: Show that ∑∑
==

=
nt tnt tt xyxb 1 21ˆ  minimizes the sum of squared errors  ∑

=

nt 1 ( yt−bxt)2.                               CB  Using only Fourier frequencies ωk=2π k/n, k∈T⊆{0,…,m}, in the trigonometric regression model   yt=∑
∈Tk ( Akcos(ωkt)+Bksin(ωkt))+ut  has the advantage that the regressors are orthogonal1, i.e.,                     0T =jk SC , if 0≤j,k≤m,                             0TT == jkjk CCSS , if 0≤j≠k≤m, where                 
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                                                            1 See Appendix B. 

 In the case of orthogonal regressors, the LS estimates      ( )T110 ,...ˆ,ˆ,ˆ BAA  
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nt tn yt1 12 )sin(ω , … obtained from simple models with only one regressor.    CR 
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  Exercise: Show that ∑
=

nt nk t1 22 )(cos π =n, if k= 2n .             CN     Exercise: If n is even, then m=n/2 and ωm=π. But since sin(π t)=0, only cos(π t) can be used as a regressor. Show that the LS estimate of the parameter Am is given by                                  tnt tnm yA )1(ˆ 11 −= ∑
=

.                         CM                        The periodogram I(ω) of a time series y1,…,yn is for a Fourier frequency ωk with k∈{1,2,…,[ 21−n ]} defined by           I(ωk)= )ˆˆ( 2ˆ 228 43421 kR kkn BA +π                 = πn8 (( n2 ∑
=

nt ty1 cos(ωkt))2+( n2 ∑
=

nt ty1 sin(ωkt))2)           = nπ21 ((∑
=

nt ty1 cos(ωkt))2+(∑
=

nt ty1 sin(ωkt))2). 
   

 Apart from an unimportant scaling factor, I(ωk) is just the squared estimate of the amplitude of a sinusoid with  frequency ωk, hence its size indicates how important that particular frequency is.    Defining the periodogram for an arbitrary frequency ω by I(ω)= nπ21 ((∑
=

nt ty1 cos(ω t))2+(∑
=

nt ty1 sin(ω t))2), it can be written in complex form as             I(ω)= nπ21 211 )(sin)(cos ∑∑
==

+
nt tnt t tωyitωy              = nπ21 21 ))(sin)(cos( tωitωynt t +∑

=

             = nπ21 21∑=nt tiωtey .                                        CP                 
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Exercise: Show that it is sufficient to consider I(ω) on the interval 0≤ω≤π by proving that I(ω) is periodic with period 2π and symmetric about the y-axis.                                 CS  Exercise: Revisit the not seasonally adjusted Retail and Food Services Sales. Plot the differenced log series.  d <- y-lag(y,k=-1); d <- na.omit(d,method="r")  par(mar=c(2,2,1,1)); plot(d,type="l")  

 
 The sequence  

∑
=

nt ty1 tkiωe− , k=0,…,n−1,  is called the discrete Fourier transform (DFT) of the sequence y1,…,yn.   The R function fft uses a fast algorithm (the fast Fourier transform) to calculate the slightly different version  
∑
=

nt ty1 )1( −− tkiωe , k=0,…,n−1. However, we have                  2121 )1( ∑∑
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Exercise: Calculate the periodogram of d at the Fourier frequencies ωk, k=1,…,[n/2] and plot it.   n <- length(d); m <- floor(n/2)  # number of frequencies  f <- (2*pi/n)*(1:m)  # vector of frequencies  ft <- fft(d)[2:(m+1)]  # excl. k=0,m+1,m+2,...,n-1  pg <- (1/(2*pi*n))*(Mod(ft))^2 # Mod = modulus  plot(f,pg,type="l") 
 Exercise: Redo the last exercise, but this time omit some observations to guarantee that the seasonal frequencies  2π j/12, j=1,…,6, are Fourier frequencies. 

 r12 <- n%%12  # n modulo 12               #  the remainder we get when we divide n by 12  n12 <- n - r12  d12 <- d[(r12+1):n] # omit the first r12 observations              #  length of new series d12 is divisible by 12     m12 <- floor(n12/2); f12 <- (2*pi/n12)*(1:m12)    ft12 <- fft(d12); ft12 <- ft12[2:(m12+1)]    pg12 <- (1/(2*pi*n12))*(Mod(ft12))^2   plot(f12,pg12,type="l") 
 The peaks at the seasonal frequencies are more pronounced than the slightly displaced peaks in the last exercise.        


