Trigonometric functions in discrete time:

$$
\sin \left(\frac{2 \pi}{p} t\right) \quad \cos \left(\frac{2 \pi}{p} t\right)
$$

Clearly,

$$
g(t)=\cos \left(\frac{2 \pi}{2} t\right)=\cos (\pi t)=(-1)^{t}
$$

is the most rapid oscillation we can observe.
The frequency π (one half a cycle per sampling interval) is known as Nyquist frequency.

If one observation is sampled per unit of time, a periodic function with period n completes one full cycle in the observation period, a periodic function with period $n / 2$ completes two full cycles in the observation period, etc. In general, a periodic function with period n / k completes k full cycles in the observation period. The frequency $\omega_{k}=2 \pi k / n$ that is associated with the period n / k is called the k -th Fourier frequency.

We consider only those Fourier frequencies ω_{k} that are less than or equal to the Nyquist frequency π, i.e., $k \leq m=[n / 2]$.
If the improper Fourier frequency $2 \pi 0 / n=0$ is also included, there are always n non-vanishing sines and cosines.

If n is even and $m=n / 2$, we have

$$
1, \cos \left(\frac{2 \pi \cdot 1}{n} t\right), \ldots, \cos \left(\frac{2 \pi \cdot m}{n} t\right), \sin \left(\frac{2 \pi \cdot 1}{n} t\right), \ldots, \sin \left(\frac{2 \pi \cdot(m-1)}{n} t\right) .
$$

If n is odd and $m=(n-1) / 2$, we have
$1, \cos \left(\frac{2 \pi \cdot 1}{n} t\right), \ldots, \cos \left(\frac{2 \pi \cdot m}{n} t\right), \sin \left(\frac{2 \pi \cdot 1}{n} t\right), \ldots, \sin \left(\frac{2 \pi \cdot m}{n} t\right)$.
Note that $\cos \left(\frac{2 \pi \cdot 0}{n} t\right)$ equals 1 and $\sin \left(\frac{2 \pi \cdot 0}{n} t\right)$ vanishes.
If n is even, then $\sin \left(\frac{2 \pi \cdot m}{n} t\right)=\sin (\pi t)$ vanishes too.

Exericse: Show that $\hat{b}=\sum_{t=1}^{n} x_{t} y_{t} / \sum_{t=1}^{n} x_{t}^{2}$ minimizes the
sum of squared errors $\sum_{t=1}^{n}\left(y_{\mathrm{t}}-b x_{t}\right)^{2}$.
Using only Fourier frequencies $\omega_{k}=2 \pi k / n, k \in T \subseteq\{0, \ldots, m\}$, in the trigonometric regression model

$$
y_{t}=\sum_{k \in T}\left(A_{k} \cos \left(\omega_{k} t\right)+B_{k} \sin \left(\omega_{k} t\right)\right)+u_{t}
$$

has the advantage that the regressors are orthogonal ${ }^{1}$, i.e.,

$$
\begin{aligned}
& C_{k}^{\mathrm{T}} S_{j}=0, \text { if } 0 \leq j, k \leq m, \\
& S_{k}^{\mathrm{T}} S_{j}=C_{k}^{\mathrm{T}} C_{j}=0, \text { if } 0 \leq j \neq k \leq m,
\end{aligned}
$$

where

$$
C_{k}=\left(\begin{array}{c}
\cos \left(\frac{2 \pi k}{n} \cdot 1\right) \\
\vdots \\
\cos \left(\frac{2 \pi k}{n} \cdot n\right)
\end{array}\right), S_{j}=\left(\begin{array}{c}
\sin \left(\frac{2 \pi j}{n} \cdot 1\right) \\
\vdots \\
\sin \left(\frac{2 \pi j}{n} \cdot n\right)
\end{array}\right) .
$$

[^0]In the case of orthogonal regressors, the LS estimates

$$
\begin{aligned}
& \left(\hat{A}_{0}, \hat{A}_{1}, \hat{B}_{1}, \ldots\right)^{\mathrm{T}} \\
= & \left(\left(C_{0}, C_{1}, S_{1}, \ldots\right)^{\mathrm{T}}\left(C_{0}, C_{1}, S_{1}, \ldots\right)\right)^{-1}\left(C_{0}, C_{1}, S_{1}, \ldots\right)^{\mathrm{T}} y \\
= & \underbrace{\left(\begin{array}{cccc}
C_{0}^{\mathrm{T}} C_{0} & C_{0}^{\mathrm{T}} C_{1} & C_{0}^{\mathrm{T}} S_{1} & \ldots \\
C_{1}^{\mathrm{T}} C_{0} & C_{1}^{\mathrm{T}} C_{1} & C_{1}^{\mathrm{T}} S_{0} & \ldots \\
S_{1}^{\mathrm{T}} C_{0} & S_{1}^{\mathrm{T}} C_{1} & S_{1}^{\mathrm{T}} S_{1} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)}_{=\operatorname{diag}(n, n / 2, n / 2, \ldots)}\left(\begin{array}{c}
C_{0}^{\mathrm{T}} y \\
C_{1}^{\mathrm{T}} y \\
S_{1}^{\mathrm{T}} y \\
\vdots
\end{array}\right)
\end{aligned}
$$

obtained from the full model are identical to the estimates

$$
\begin{aligned}
& \hat{A}_{0}=\sum_{t=1}^{n} \cos \left(\omega_{0} t\right) y_{t} / \sum_{t=1}^{n} \cos ^{2}\left(\omega_{0} t\right)=\frac{1}{n} \sum_{t=1}^{n} \cos \left(\omega_{0} t\right) y_{t}=\bar{y}, \\
& \hat{A}_{1}=\sum_{t=1}^{n} \cos \left(\omega_{1} t\right) y_{t} / \sum_{t=1}^{n} \cos ^{2}\left(\omega_{1} t\right)=\frac{2}{n} \sum_{t=1}^{n} \cos \left(\omega_{1} t\right) y_{t}, \\
& \hat{B}_{1}=\sum_{t=1}^{n} \sin \left(\omega_{1} t\right) y_{t} / \sum_{t=1}^{n} \sin ^{2}\left(\omega_{1} t\right)=\frac{2}{n} \sum_{t=1}^{n} \sin \left(\omega_{1} t\right) y_{t}, \ldots
\end{aligned}
$$

obtained from simple models with only one regressor.

Exercise: Show that $\sum_{t=1}^{n} \cos ^{2}\left(\frac{2 \pi k}{n} t\right)=n$, if $k=\frac{n}{2}$.

Exercise: If n is even, then $m=n / 2$ and $\omega_{m}=\pi$. But since $\sin (\pi t)=0$, only $\cos (\pi t)$ can be used as a regressor. Show that the LS estimate of the parameter A_{m} is given by

$$
\begin{equation*}
\hat{A}_{m}=\frac{1}{n} \sum_{t=1}^{n} y_{t}(-1)^{t} . \tag{CM}
\end{equation*}
$$

The periodogram $I(\omega)$ of a time series y_{1}, \ldots, y_{n} is for a Fourier frequency ω_{k} with $k \in\left\{1,2, \ldots,\left[\frac{n-1}{2}\right]\right\}$ defined by

$$
\begin{aligned}
I\left(\omega_{k}\right) & =\frac{n}{8 \pi}(\underbrace{\hat{A}_{k}^{2}+\hat{B}_{k}^{2}}_{\hat{R}_{k}^{2}}) \\
& =\frac{n}{8 \pi}\left(\left(\frac{2}{n} \sum_{t=1}^{n} y_{t} \cos \left(\omega_{k} t\right)\right)^{2}+\left(\frac{2}{n} \sum_{t=1}^{n} y_{t} \sin \left(\omega_{k} t\right)\right)^{2}\right) \\
& =\frac{1}{2 \pi n}\left(\left(\sum_{t=1}^{n} y_{t} \cos \left(\omega_{k} t\right)\right)^{2}+\left(\sum_{t=1}^{n} y_{t} \sin \left(\omega_{k} t\right)\right)^{2}\right) .
\end{aligned}
$$

Apart from an unimportant scaling factor, $I\left(\omega_{k}\right)$ is just the squared estimate of the amplitude of a sinusoid with frequency ω_{k}, hence its size indicates how important that particular frequency is.

Defining the periodogram for an arbitrary frequency ω by

$$
I(\omega)=\frac{1}{2 \pi n}\left(\left(\sum_{t=1}^{n} y_{t} \cos (\omega t)\right)^{2}+\left(\sum_{t=1}^{n} y_{t} \sin (\omega t)\right)^{2}\right)
$$

it can be written in complex form as

$$
\begin{aligned}
I(\omega) & =\frac{1}{2 \pi n}\left|\sum_{t=1}^{n} y_{t} \cos (\omega t)+i \sum_{t=1}^{n} y_{t} \sin (\omega t)\right|^{2} \\
& =\frac{1}{2 \pi n}\left|\sum_{t=1}^{n} y_{t}(\cos (\omega t)+i \sin (\omega t))\right|^{2} \\
& =\frac{1}{2 \pi n}\left|\sum_{t=1}^{n} y_{t} e^{i \omega t}\right|^{2} .
\end{aligned}
$$

Exercise: Show that it is sufficient to consider $I(\omega)$ on the interval $0 \leq \omega \leq \pi$ by proving that $\mathrm{I}(\omega)$ is periodic with period 2π and symmetric about the y-axis.

Exercise: Revisit the not seasonally adjusted Retail and Food Services Sales. Plot the differenced log series.
d <- y-lag(y,k=-1); d <- na.omit(d,method="r") $\operatorname{par}(\operatorname{mar}=c(2,2,1,1)) ;$ plot(d,type="l")

The sequence

$$
\sum_{t=1}^{n} y_{t} e^{-i \omega_{k} t}, k=0, \ldots, n-1
$$

is called the discrete Fourier transform (DFT) of the sequence y_{1}, \ldots, y_{n}.

The R function fft uses a fast algorithm (the fast Fourier transform) to calculate the slightly different version

$$
\sum_{t=1}^{n} y_{t} e^{-i \omega_{k}(t-1)}, k=0, \ldots, n-1
$$

However, we have

$$
\begin{aligned}
\left|\sum_{t=1}^{n} y_{t} e^{-i \omega_{k}(t-1)}\right|^{2} & =\left|e^{i \omega_{k}} \sum_{t=1}^{n} y_{t} e^{-i \omega_{k} t}\right|^{2} \\
& =|\underbrace{e^{i \omega_{k}}}_{=1}|^{2}\left|\sum_{t=1}^{n} y_{t} e^{-i \omega_{k} t}\right|^{2}
\end{aligned}
$$

Exercise: Calculate the periodogram of d at the Fourier

 frequencies $\omega_{k}, k=1, \ldots,[n / 2]$ and plot it.$\mathrm{n}<-$ length(d); m <- floor(n/2) \# number of frequencies
$\mathrm{f}<-\left(2^{*} \mathrm{pi} / \mathrm{n}\right) *(1: \mathrm{m})$ \# vector of frequencies
$\mathrm{ft}<-\mathrm{fft}(\mathrm{d})[2:(\mathrm{m}+1)]$ \# excl. $\mathrm{k}=0, \mathrm{~m}+1, \mathrm{~m}+2, . . ., \mathrm{n}-1$
$\mathrm{pg}<-\left(1 /\left(2^{*} \mathrm{pi}{ }^{*} \mathrm{n}\right)\right)^{*}(\operatorname{Mod}(\mathrm{ft}))^{\wedge} 2 \# \operatorname{Mod}=\operatorname{modulus}$
plot(f,pg,type="l")

Exercise: Redo the last exercise, but this time omit some observations to guarantee that the seasonal frequencies $2 \pi j / 12, j=1, \ldots, 6$, are Fourier frequencies.
r12 $<-\mathbf{n} \% \% 12$ \# n modulo 12
\# the remainder we get when we divide n by 12
n12 $<-\mathbf{n}$ - r12
d12 <- d[(r12+1):n] \# omit the first r12 observations
\# length of new series d12 is divisible by 12
m12 <- floor(n12/2); f12 <- (2*pi/n12)*(1:m12)
$\mathrm{ft} 12<-\mathrm{fft}(\mathrm{d} 12)$; $\mathrm{ft} 12<-\mathrm{ft} 12[2:(\mathrm{m} 12+1)]$
pg12 <- (1/(2*pi*n12))*(Mod(ft12)) ${ }^{\wedge} 2$
plot(f12,pg12,type="l")

The peaks at the seasonal frequencies are more pronounced than the slightly displaced peaks in the last exercise.

[^0]: ${ }^{1}$ See Appendix B.

