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Exercise: Download the quarterly Real Gross Domestic
Product, 3 Decimal from FRED, import it into R, and
plot the periodogram of the differenced log series.

D <- read.csv("GDPC1.csv"); N <- nrow(D)
d <- as.Date(D[,1]); y <- log(D[,2])
r <- y[2:N]-y[1:(N-1)]; n <- N-1  # log returns

m <- floor(n/2); f <- (2*pi/n)*(1:m)
ft <- fft(r)[2:(m+1)]  # excl. k=0,m+1,m+2,...,n-1
pg <- (1/(2*pi*n))*(Mod(ft))^2 # Mod = modulus
par(mar=c(2,2,1,1)); plot(f,pg,type="l")

Since there are no strict periodicities in the seasonally
adjusted GDP, the periodogram does not exhibit any
isolated, sharp peaks. However, the cluster of large
periodogram ordinates in the low frequency range is an
indication of the presence of business cycles stretching
over several quarters (or even years).
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In case of white noise, all periodogram ordinates should
be approximately of the same size and the standardized
cumulative periodogram should increase linearly from 0
to 1. Bartlett’s test for white noise (which is included in
the R package hwwntest) uses the maximum deviation
of the standardized cumulative periodogram and this
straight line as test statistic.

par(mfrow=c(1,1),mar=c(2,2,1,1))
M <- 1:floor((n-1)/2)                        # pi is excluded
h <- cumsum(pg[M])/sum(pg[M])
       # standardized cumulative periodogram
plot(c(0,f[M]),c(0,h),type="s")       # 0 is included
                                                           # "s": stair steps
lines(c(0,pi),c(0,1),lty=2,col="darkgray")
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 The presence of business cycles of several quarters
duration implies a tendency for good quarters to be
followed by good quarters and bad quarters to be
followed by bad quarters.

Exercise: Compare the growth rates of successive
quarters.
plot(r[1:(n-1)],r[2:n],pch=20)

In this scatter diagram, the GDP growth rate in quarter t is
plotted against the GDP growth rate in quarter t-1.
The graph suggests that successive growth rates are
positively correlated.
Given a time series x1,…,xn, we could try to measure the
strength of the relationship between successive observations
by calculating the sample covariance from the pairs
(x1,x2),…,(xn-1,xn).

The sample autocovariance (at lag 1)
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differs from a conventional sample covariance in two ways.

Firstly, the sum is divided by n although it contains less
than n terms.
Secondly, the two sample means occurring in each term
are not calculated from the samples x1,…,xn-1 and x2,…,xn,
respectively, but from the whole sample x1,…,xn.
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Sample moments calculated from a given time series
x1,…,xn are only meaningful, if the data generating process
satisfies certain conditions. For example, the sample mean
x  does not have a meaningful interpretation, unless all xt
have the same mean.

A stochastic process x is said to be (weakly) stationary if
all xt have the same mean and the same variance, and
                    Cov(xs,xs-k)=Cov(xt,xt-k) "s,t,kÎZ.

If x is white noise, it clearly satisfies the first two conditions
of stationarity. In addition, it follows from
                            Cov(xs,xt)=0 "s¹t
that
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hence white noise is stationary.

The autocovariance function and the autocorrelation
function of a weakly stationary process x are defined by

g (k)=Cov(xt,xt-k), k=0,±1,±2,..., 1

and r(k)= g (k)/g (0), k=0,±1,±2,...,

respectively.

For k <n  the autocovariance g (k) is estimated by
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(sample autocovariance at lag k) and the autocorrelation
r(k) by
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(sample autocorrelation at lag k).

1 Because of the stationarity of x, this definition does not depend on
the choice of t.
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It is shown in Appendix B that the periodogram of a sample
x1,…,xn can for a Fourier frequency
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kp2 <p

be written in terms of its sample autocovariances:
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The periodogram may therefore be regarded as a sample
analogue of the function
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which is called the spectral density of the process x.

It follows from cos(-w)=cos(w) that f is an even
function, i.e., f(-w)=f(w). Moreover f is periodic with period
2p. Hence, we need to consider f(w) only on the interval
[0,p].

The spectral density of a zero-mean white noise is a
constant function, i.e.,

                               f(w)= π2
1 g(0).

To test the null hypothesis that a given time series is a
realization of white noise we may either check whether its
periodogram is roughly constant (frequency domain tests)
or, equivalently, whether its sample autocovariances are
close to zero (time domain tests).
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Suppose that z1,…,zn are independent random variables
with mean m=0 and variance s 2>0.

Then the mean and the variance of the statistic
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2 In contrast to the sample autocovariance, which uses the sample
mean, this statistic uses m.
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Exercise: Suppose that x1,…,xn are independent random
variables with mean m and variance s 2>0. Show that
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Regarding the sample autocorrelation
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as an approximation of )1(r) , we may expect that under
the null hypothesis of independence, the mean and the
variance of √ (1) approximately are given by 0 and 1,
respectively.
For large values of n we may also expect that the
distribution of √ (1) is approximately normal, hence

)1(r̂  should therefore fall between the bounds ±1.96/Ön
approximately with probability 95%.

Exercise: Plot the sample autocorrelation function of
the returns on the monthly S&P 500 Index.
par(mfrow=c(1,1),mar=c(2,2,1,1)); acf(r,lag.max=50)

The fact that individual sample autocorrelations fall
outside the approximate 95% bounds must be interpreted
with caution. The bounds can only be used to assess the
significance of one specified sample autocorrelation.
Performing significance tests simultaneously for several
sample autocorrelations inevitably increases the risk of
rejecting a true null hypothesis.
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Exercise: Examine the sample autocorrelations of the
quarterly GDP.

Nonsignificant sample autocorrelations may be due to
nonstationarity. For example, the sample autocorrelation
at lag 4 of the quarterly GDP growth rates xt is slightly
negative over the whole postwar period. But a subperiod
analysis shows that there is a clear negative relationship
between xt and xt-4 in the first 15 years, whereas in the
remaining years there is even a positive relationship
between xt and xt-4.

par(mfrow=c(1,3),mar=c(2,2,1,1))
acf(r[1:n],lag.max=8,ylim=c(-0.4,1))
acf(r[1:60],lag.max=8,ylim=c(-0.4,1))
acf(r[61:n],lag.max=8,ylim=c(-0.4,1))
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A promising way to reveal any nonstationarities is to
produce a cumulative plot.

For an examination of the relationship between xt and xt-1,
we plot
             x2 x2-1, x2 x2-1+x3 x3-1, x2 x2-1+x3 x3-1+x4 x4-1, …

against time.

The last value
                            x2 x2-1+x3 x3-1+…+xn xn-1

divided by n is an estimate of the non-central second
moment Ext xt-1.

In case of stationarity, there should be a roughly linear
increase (or decrease) from the first value to the last.

par(mfrow=c(1,1),mar=c(2,2,1,1))
plot(d[(1+2):N],cumsum(r[2:n]*r[1:(n-1)]),type="l")

There is a break in the noncentral second moment which
may be due to a break in the mean or a break in the
autocovariance.

A break in the autocovariance may be due to a break in the
autocorrelation or a break in the variance3.

3 There was a reduction in macroeconomic volatility starting in the
1980s (Great Moderation).
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Since periodogram ordinates are nonnegative, it makes
sense to use sums of periodogram ordinates as test
statistics. In contrast, sample autocorrelations need not
have the same sign. We should therefore rather use sums
of squared sample autocorrelations.

In case of independence, the sample autocorrelations are
approximately normal with mean zero and variance 1/n.

Hence, the statistic
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will be approximately chi-squared distributed with h
degrees of freedom, if the sample autocorrelations are
approximately independent.

For large values of n, this statistic is almost identical to
the widely used Ljung-Box statistic
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Exercise: Suppose that z1,…,zn are independent random
variables with mean zero and variance s2. Show that
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