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Let x be a zero-mean stochastic process. A roughly linear
relationship between successive observations may be
described by a simple autoregressive model of the form

௧ݔ = ௧ିଵݔ߶ + ௧ݑ
where u is zero-mean white noise.

A stationary process x satisfying this first-order difference
equation is called a first-order autoregressive process
(AR(1) process).

Substituting fxt-2+ut-1 for xt-1, fxt-3+ut-2 for xt-2, … gives

xt = fxt-1+ut

         = f(fxt-2+ut-1)+ut

              = f2xt-2+fut-1+ut

        = f2(fxt-3+ut-2)+fut-1+ut

        = f3xt-3+f2ut-2+fut-1+ut
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If k is large and f <1, then the first part of this expression
is negligible, hence
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Suppose that f <1. Then the solution
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For example, the autocovariance at lag k=1 is given by
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Using the lag operator L we can write the equation

xt = fxt-1 + ut
as

ut = xt - fxt-1 = L0(xt) - fL (xt)
                            = (L0-fL)(xt)
              = (1-fL)(xt)

and the equation
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A comparison of the equations
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and, more generally, that the lag operator follows the usual
algebraic rules. We may therefore write
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A stationary process x satisfying the p’th-order difference
equation

xt=f1xt-1+…+fpxt-p+ut,

where u is zero-mean white noise and fp¹0, is called an
autoregressive process of order p (AR(p) process).

A stationary process X satisfying

xt=f1xt-1+…+fpxt-p+ut +q1ut-1+…+qqut-q,

where u is zero-mean white noise, fp¹0, and qq¹0, is called
an autoregressive moving average process of order (p,q)
(ARMA(p,q) process).

The equation

xt=f1xt-1+…+fpxt-p+ut +q1ut-1+…+qqut-q

can also be written as

xt-f1xt-1-…-fpxt-p=ut +q1ut-1+…+qqut-q

or as (1-f1L-…-fpLp)(xt)=(1+q1L+…+qqLq)(ut).

An ARMA(p,0) process is an AR(p) process.
An ARMA(0,q) is called a moving average process of
order q (MA(q) process).

A process x is called an autoregressive integrated moving
average process of order (p,d,q) (ARIMA(p,d,q) process)
if its d’th difference is an ARMA(p,q) process, i.e.,

         (1-f1L-…-fpLp)(Ddxt)=(1+q1L+…+qqLq)(ut).

ARIMA(p,d,q) processes may be generalized by permitting
the degree of differencing, d, to take fractional values.
The fractional differencing operator Dd=(1-L)d is defined
as a power series expansion in integer powers of L:

      (1-L)d=1-dL+d(d-1) 2
2L -d(d-1)(d-2) !3

3L +…

A process is called an autoregressive fractionally
integrated moving average process (ARFIMA(p,d,q)
process) if the fractionally differenced  process is an
ARMA process.
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We say that an ARMA(p,q) representation

        (1-f1L-…-fpLp)(xt)=(1+q1L+…+qqLq)(ut),

is causal if xt can be expressed in terms of present and
past shocks, i.e.,

xt=å
¥

=
-

0j
jtjuy .

It is called invertible if ut has a representation of the form
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Causality is equivalent to

F(z)=1-f1z-…-fpzp¹0 "ïzï£1

and invertibility is equivalent to

Q(z)=1+q1z+…+qqzq¹0 "ïzï£1.

For example, if the only zero 1/f1 of the polynomial

F(z)=1-f1z
satisfies

ï1/f1ï>1,
then
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hence the AR(1) representation

                                      (1-f1L)(xt)=ut

is causal.
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Exercise: Determine which of the following ARMA
representations are causal and which are invertible.
(i) xt-0.7xt-1=ut M1
(ii) xt+0.4xt-1-1.5xt-2=ut

(iii) xt=ut-0.2ut-1

(iv) xt=ut+0.8ut-1+2.6ut-2 M2
(v) xt=ut- 2 ut-1+ut-2

(vi) xt=ut+ut-2

(vii) xt-xt-1=ut-0.3ut-1 M3
(viii) xt-0.2xt-1=ut+0.4ut-1-1.6ut-2

(ix) xt-1.2xt-1+0.1xt-2=ut+0.3ut-1-1.2ut-2

Exercise: Fit an ARMA(1,2) model to the growth
rates of the quarterly GDP.

r.dm <- r-mean(r) # r is demeaned
p <- 1; q <- 2
arima(r.dm,order=c(p,0,q),include.mean=FALSE,
          transform.pars=TRUE)

If transform.pars=TRUE, the AR parameters are checked
and, if necessary, transformed to ensure causality.

We obtain the following estimates of f1, q1, q2, and s2:

Coefficients:
         ar1     ma1     ma2
      0.2844  0.0547  0.1557

sigma^2 estimated as 7.734e-05
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Exercise: Show that the MA(¥) representation of the
causal ARMA(1,1) process

xt-fxt-1=ut+qut-1
is given by
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or, equivalently,

                (1+qz)=(1-fz)( y0+y1z+y2z2+…).

Equating coefficients of zj we obtain:

j=0: 1=y0,
 j=1: q=y1-fy0 Þ y1=q+fy0=q+f,
M
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Exercise: Show that the autocovariances

g (k)=Cov(xt,xt-k)

of a causal ARMA(1,1) process

xt-fxt-1=ut+qut-1

satisfy

g(k)=fg(k-1), if k>1.

Solution: Multiplying the difference equation by xt-k and
taking expectations we obtain for k>1

xt xt-k - f xt-1 xt-k =ut xt-k+qut-1 xt-k ,

Ext xt-k -fExt-1 xt-k =Eut xt-k+q Eut-1 xt-k ,

g(k)-fg(k-1)=0.

Exercise: Find the stationary solution of the
noncausal univariate AR(1) equation

xt=fxt-1+ut, f >1.

Solution: xt=fxt-1+ut Þ xt-1= f
1 xt- f

1 ut

Þ xt = f
1 xt+1- f

1 ut+1

                   = f
1 ( f

1 xt+2- f
1 ut+2)- f

1 ut+1

              = 2
1
f

xt+2- 2
1
f

ut+2- f
1 ut+1

M

              = -å
¥

=
+

1

1

j
jtφ

uj                       MN



9

Exercise: Show that the stationary solution
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of the noncausal univariate AR(1) equation

xt=fxt-1+ut, f >1, var(ut)=s2

also satisfies the causal univariate equation
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Thus v is white noise. MC

This exercise shows that the stationary solution of the
noncausal equation also satisfies a causal equation. Nothing
will therefore be lost if we consider only causal equations.
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Exercise: Show that the invertible MA(1) model

xt=ut+ 2
1 ut-1, var(ut)=4

implies the same autocovariance function as the non-
invertible MA(1) model

                            xt=ut+2ut-1, var(ut)=1.                       MO

Remark: Since we can only observe xt and not ut, we
cannot distinguish between the two models. They are
therefore called observationally equivalent.
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Exercise: Use the model-selection criteria AIC and BIC to
find the “best” ARMA(p,q) model with p£3, q£3 for the
(demeaned) growth rates of the quarterly GDP.

Hint: Trying to strike a balance between the goodness of
fit (measured by the log likelihood L) and the complexity
of the model (measured by the total number p+q+1 of
model parameters f1,…,fp,q1,…,qq,s2), these criteria
select that model which minimizes

AIC(p,q) = -2 L + 2(p+q+1)
and

BIC(p,q) = -2 L + (p+q+1) log(n),

respectively.

AIC <- BIC <- matrix(nrow=4,ncol=4)
for (p in 0:3) for (q in 0:3) {
   h <- arima(r.dm,order=c(p,0,q),include.mean=F)
   AIC[p+1,q+1] <- -2*h$loglik+2*(p+q+1)
   BIC[p+1,q+1] <- -2*h$loglik+(p+q+1)*log(n) }
0:3; cbind(0:3,AIC); 0:3; cbind(0:3,BIC)

                0               1              2               3
 0    -1755.977 -1784.283 -1795.342 -1795.452
 1  -1794.456 -1793.917 -1795.024 -1793.477
 2  -1794.800 -1794.174 -1796.062 -1792.485
 3  -1795.332 -1794.940 -1801.370 -1800.740

                  0              1               2              3
 0  -1752.368 -1777.064 -1784.514 -1781.014
 1  -1787.237 -1783.089 -1780.586 -1775.430
 2  -1783.971 -1779.737 -1778.014 -1770.828
 3  -1780.894 -1776.893 -1779.713 -1775.473

AIC selects the ARMA(3,2) model and BIC selects the
ARMA(1,0) model.

Unfortunately, AIC and BIC rarely select the same model.
And to make matters worse, there are a lot more model-
selection criteria that could be used. So it seems that
automatic model selection with a model-selection criterion
still contains a subjective element because we have to select
the model-selection criterion first.
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Exercise: Plot the (demeaned) growth rates of the
quarterly GDP, the residuals from the ARMA(1,0) model,
which is the best model for this time series according to
BIC, and the fitted values.

par(mfrow=c(3,1),mar=c(2,2,1,1))
p <- 1; q <- 0
h <- arima(r.dm,order=c(p,0,q),include.mean=FALSE,
           transform.pars=TRUE)
plot(d[2:n],r.dm,type="l",ylim=c(-0.04,0.04))
plot(d[2:n],h$residuals,type="l",ylim=c(-0.04,0.04))
plot(d[2:n],r.dm-h$residuals,type="l",ylim=c(-0.04,0.04))

This ARMA model explains very little. The residuals are
almost of the same size as the data.
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The joint probability density of a sample x1,…,xn from a
Gaussian AR(1) process

௧ݔ = ௧ିଵݔ߶ + ௧ݑ
with i.i.d. N(0,s2) innovations ut is given by
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The maximum likelihood (ML) estimates and the
conditional ML estimates of the parameters f and s2 are
obtained by maximization of the log likelihood function
and the log likelihood function conditioned on the first
observation, respectively, with respect to f and s2.

We have

                 log ,ଵݔ)݂ … (ଶߪ,߶;௡ݔ,
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Exercise: Find the conditional ML estimates of the
parameters f and s2.

                      MM


