Let x be a zero-mean stochastic process. A roughly linear relationship between successive observations may be described by a simple autoregressive model of the form

$$
x_{t}=\phi x_{t-1}+u_{t}
$$

where u is zero-mean white noise.
A stationary process x satisfying this first-order difference equation is called a first-order autoregressive process (AR(1) process).

Substituting $\phi x_{t-2}+u_{t-1}$ for $x_{t-1}, \phi x_{t-3}+u_{t-2}$ for x_{t-2}, \ldots gives

$$
\begin{aligned}
x_{t} & =\phi x_{t-1}+u_{t} \\
& =\phi\left(\phi x_{t-2}+u_{t-1}\right)+u_{t} \\
& =\phi^{2} x_{t-2}+\phi u_{t-1}+u_{t} \\
& =\phi^{2}\left(\phi x_{t-3}+u_{t-2}\right)+\phi u_{t-1}+u_{t} \\
& =\phi^{3} x_{t-3}+\phi^{2} u_{t-2}+\phi u_{t-1}+u_{t} \\
\quad & \\
& =\phi^{k} x_{t-\mathrm{k}}+\sum_{j=0}^{k-1} \phi^{j} u_{t-j} .
\end{aligned}
$$

If k is large and $|\phi|<1$, then the first part of this expression is negligible, hence

$$
x_{t}=\sum_{j=0}^{\infty} \phi^{j} u_{t-j}
$$

Suppose that $|\phi|<1$. Then the solution

$$
x_{t}=\sum_{j=0}^{\infty} \phi^{j} u_{t-j}
$$

of the difference equation

$$
x_{t}=\phi x_{t-1}+u_{t}
$$

is stationary because

$$
\begin{aligned}
& E\left(x_{t}\right)=E \sum_{j=0}^{\infty} \phi^{j} u_{t-j}=\sum_{j=0}^{\infty} \phi^{j} E\left(u_{t-j}\right)=\sum_{j=0}^{\infty} \phi^{j} 0=0, \\
& \operatorname{Var}\left(x_{t}\right)=\sum_{j=0}^{\infty}\left(\phi^{j}\right)^{2} \operatorname{Var}\left(u_{t-j}\right)=\sum_{j=0}^{\infty}\left(\phi^{2}\right)^{j} \sigma^{2}=\sigma^{2} \sum_{j=0}^{\infty}\left(\phi^{2}\right)^{j}=\frac{\sigma^{2}}{1-\phi^{2}},
\end{aligned}
$$

and

$$
\operatorname{Cov}\left(x_{t}, x_{t-k}\right)=\ldots=\frac{\phi^{|k|} \sigma^{2}}{1-\phi^{2}}
$$

do not depend on t.

For example, the autocovariance at lag $k=1$ is given by

$$
\operatorname{Cov}\left(x_{t}, x_{t-1}\right)
$$

$$
=E\left(u_{t}+\phi u_{t-1}+\phi^{2} u_{t-2}+\ldots\right)\left(u_{t-1}+\phi u_{t-2}+\phi^{2} u_{t-3}+\ldots\right)
$$

$$
=E\left(u_{t}+\phi u_{t-1}+\phi^{2} u_{t-2}+\ldots\right) \sum_{j=1}^{\infty} \phi^{j-1} u_{t-j}
$$

$$
=E\left(u_{t} \sum_{j=1}^{\infty} \phi^{j-1} u_{t-j}+\phi u_{t-1} \sum_{j=1}^{\infty} \phi^{j-1} u_{t-j}+\phi^{2} u_{t-2} \sum_{j=1}^{\infty} \phi^{j-1} u_{t-j}+\ldots\right)
$$

$$
=\sum_{j=1}^{\infty} \phi^{j-1} E u_{t} u_{t-j}+\sum_{j=1}^{\infty} \phi^{j} E u_{t-1} u_{t-j}+\sum_{j=1}^{\infty} \phi^{j+1} E u_{t-2} u_{t-j}+\ldots
$$

$$
=\left(\phi^{0} 0+\phi^{1} 0+\ldots\right)+\left(\phi^{1} \sigma^{2}+\phi^{2} 0+\ldots\right)+\left(\phi^{2} 0+\phi^{3} \sigma^{2}+\ldots\right)+\ldots
$$

$$
=\phi^{1} \sigma^{2}+\phi^{3} \sigma^{2}+\phi^{5} \sigma^{2}+\ldots
$$

$$
=\phi \sigma^{2}\left(\left(\phi^{2}\right)^{0}+\left(\phi^{2}\right)^{1}+\left(\phi^{2}\right)^{2}+\ldots\right)
$$

$$
\begin{equation*}
=\frac{\phi \sigma^{2}}{1-\phi^{2}} . \tag{IM}
\end{equation*}
$$

Using the lag operator L we can write the equation

$$
x_{t}=\phi x_{t-1}+u_{t}
$$

as

$$
\begin{aligned}
u_{t}=x_{t}-\phi x_{t-1} & =L^{0}\left(x_{t}\right)-\phi L\left(x_{t}\right) \\
& =\left(L^{0}-\phi L\right)\left(x_{t}\right) \\
& =(1-\phi L)\left(x_{t}\right)
\end{aligned}
$$

and the equation

$$
x_{t}=\sum_{j=0}^{\infty} \phi^{j} u_{t-j}
$$

as

$$
\begin{aligned}
x_{t} & =\sum_{j=0}^{\infty} \phi^{j} L^{j}\left(u_{t}\right) \\
& =\left(\sum_{j=0}^{\infty} \phi^{j} L^{j}\right)\left(u_{t}\right) \\
& =\left(\sum_{j=0}^{\infty}(\phi L)^{j}\right)\left(u_{t}\right) .
\end{aligned}
$$

A comparison of the equations

$$
(1-\phi L)\left(x_{t}\right)=u_{t}
$$

and

$$
x_{t}=\left(\sum_{j=0}^{\infty}(\phi L)^{j}\right)\left(u_{t}\right)
$$

suggests that the operator

$$
\sum_{j=0}^{\infty}(\phi L)^{j}
$$

is the inverse operator of

$$
1-\phi L
$$

and, more generally, that the lag operator follows the usual algebraic rules. We may therefore write

$$
\begin{gathered}
(1-\phi L)^{-1}=\sum_{j=0}^{\infty}(\phi L)^{j} \\
\frac{1}{1-\phi L}=\sum_{j=0}^{\infty}(\phi L)^{j} .
\end{gathered}
$$

A stationary process x satisfying the p 'th-order difference equation

$$
x_{t}=\phi_{1} x_{t-1}+\ldots+\phi_{p} x_{t-p}+u_{t},
$$

where u is zero-mean white noise and $\phi_{p} \neq 0$, is called an autoregressive process of order \boldsymbol{p} ($\mathrm{AR}(p)$ process).

A stationary process X satisfying

$$
x_{t}=\phi_{1} x_{t-1}+\ldots+\phi_{p} x_{t-p}+u_{t}+\theta_{1} u_{t-1}+\ldots+\theta_{q} u_{t-q},
$$

where u is zero-mean white noise, $\phi_{p} \neq 0$, and $\theta_{q} \neq 0$, is called an autoregressive moving average process of order (p, q) ($\operatorname{ARMA}(p, q)$ process).

The equation

$$
x_{t}=\phi_{1} x_{t-1}+\ldots+\phi_{p} x_{t-p}+u_{t}+\theta_{1} u_{t-1}+\ldots+\theta_{q} u_{t-q}
$$

can also be written as

$$
x_{t}-\phi_{1} x_{t-1}-\ldots-\phi_{p} x_{t-p}=u_{t}+\theta_{1} u_{t-1}+\ldots+\theta_{q} u_{t-q}
$$

$$
\text { or as } \quad\left(1-\phi_{1} L-\ldots-\phi_{p} L^{p}\right)\left(x_{t}\right)=\left(1+\theta_{1} L+\ldots+\theta_{q} L^{q}\right)\left(u_{t}\right) .
$$

$\operatorname{An} \operatorname{ARMA}(p, 0)$ process is an $\operatorname{AR}(p)$ process.
An $\operatorname{ARMA}(0, q)$ is called a moving average process of order \boldsymbol{q} (MA (q) process).

A process x is called an autoregressive integrated moving average process of order $(\boldsymbol{p}, \boldsymbol{d}, \boldsymbol{q})$ ($\operatorname{ARIMA}(p, d, q)$ process) if its d^{\prime} th difference is an $\operatorname{ARMA}(p, q)$ process, i.e.,

$$
\left(1-\phi_{1} L-\ldots-\phi_{p} L^{p}\right)\left(\Delta^{d} x_{t}\right)=\left(1+\theta_{1} L+\ldots+\theta_{q} L^{q}\right)\left(u_{t}\right)
$$

ARIMA $(p, \mathrm{~d}, q)$ processes may be generalized by permitting the degree of differencing, d, to take fractional values.

The fractional differencing operator $\Delta^{d}=(1-L)^{d}$ is defined as a power series expansion in integer powers of L :

$$
(1-L)^{d}=1-d L+d(d-1) \frac{L^{2}}{2}-d(d-1)(d-2) \frac{L^{3}}{3!}+\ldots
$$

A process is called an autoregressive fractionally integrated moving average process (ARFIMA (p, d, q) process) if the fractionally differenced process is an ARMA process.

We say that an $\operatorname{ARMA}(p, q)$ representation

$$
\left(1-\phi_{1} L-\ldots-\phi_{p} L^{p}\right)\left(x_{t}\right)=\left(1+\theta_{1} L+\ldots+\theta_{q} L^{q}\right)\left(u_{t}\right),
$$

is causal if x_{t} can be expressed in terms of present and past shocks, i.e.,

$$
x_{i}=\sum_{j=0}^{\infty} \psi_{j} u_{t-j}
$$

It is called invertible if u_{t} has a representation of the form

$$
u_{i}=\sum_{j=0}^{\infty} \xi_{j} x_{t-j}
$$

Causality is equivalent to

$$
\Phi(z)=1-\phi_{1} z-\ldots-\phi_{p} z^{p} \neq 0 \forall|z| \leq 1
$$

and invertibility is equivalent to

$$
\Theta(z)=1+\theta_{1} z+\ldots+\theta_{q} z^{q} \neq 0 \quad \forall|z| \leq 1 .
$$

For example, if the only zero $1 / \phi_{1}$ of the polynomial

$$
\Phi(z)=1-\phi_{1} z
$$

satisfies

$$
\left|1 / \phi_{1}\right|>1,
$$

then

$$
\left|\phi_{1}\right|<1
$$

and

$$
x_{t}=\sum_{j=0}^{\infty} \phi^{j} u_{t-j},
$$

hence the $\mathrm{AR}(1)$ representation

$$
\left(1-\phi_{1} L\right)\left(x_{t}\right)=u_{t}
$$

is causal.

Exercise: Determine which of the following ARMA representations are causal and which are invertible.		
(i)	$x_{t}-0.7 x_{t-1}=u_{t}$	M1
(ii)	$x_{t}+0.4 x_{t-1}-1.5 x_{t-2}=u_{t}$	
(iii)	$x_{t}=u_{t}-0.2 u_{t-1}$	
(iv)	$x_{t}=u_{t}+0.8 u_{t-1}+2.6 u_{t-2}$	M2
(v)	$x_{t}=u_{t}-\sqrt{2} u_{t-1}+u_{t-2}$	
(vi)	$x_{i}=u_{t}+u_{t-2}$	
(vii)	$x_{t}-x_{t-1}=u_{t}-0.3 u_{t-1}$	M3
(viii)	$x_{t}-0.2 x_{t-1}=u_{t}+0.4 u_{t-1}-1.6 u_{t-2}$	
(ix)	$x_{t}-1.2 x_{t-1}+0.1 x_{t-2}=u_{t}+0.3 u_{t-1}-1.2 u_{t-2}$	

Exercise: Fit an ARMA $(1,2)$ model to the growth rates of the quarterly GDP.
r.dm <- r-mean(r) \# r is demeaned
$\mathrm{p}<-1 ; \mathrm{q}<-2$
$\operatorname{arima}(\mathbf{r} . \mathrm{dm}, \operatorname{order}=\mathrm{c}(\mathrm{p}, 0, q)$,include.mean=FALSE, transform.pars=TRUE)

If transform.pars=TRUE, the AR parameters are checked and, if necessary, transformed to ensure causality.

We obtain the following estimates of $\phi_{1}, \theta_{1}, \theta_{2}$, and σ^{2} :
Coefficients:

```
        ar1 ma1 ma2
0.2844 0.0547 0.1557
```

sigma^2 ${ }^{\text {estimated as 7.734e-05 }}$

Exercise: Show that the MA(∞) representation of the causal ARMA $(1,1)$ process

$$
x_{t}-\phi x_{t-1}=u_{t}+\theta u_{t-1}
$$

is given by

$$
x_{t}=u_{t}+(\theta+\phi) \sum_{j=1}^{\infty} \phi^{j-1} u_{t-j}
$$

Solution 1: We have

$$
\frac{1+\theta z}{1-\phi z}=\sum_{j=0}^{\infty} \psi_{j} z^{j}
$$

or, equivalently,

$$
(1+\theta z)=(1-\phi z)\left(\psi_{0}+\psi_{1} z+\psi_{2} z^{2}+\ldots\right) .
$$

Equating coefficients of z^{j} we obtain:
$j=0: 1=\psi_{0}$,
$j=1: \theta=\psi_{1}-\phi \psi_{0} \Rightarrow \psi_{1}=\theta+\phi \psi_{0}=\theta+\phi$, \vdots

Solution 2: We have

$$
\begin{aligned}
x_{t}=\frac{1+\theta L}{1-\phi L} u_{t} & =\frac{1}{1-\phi L} u_{t}+\theta L \frac{1}{1-\phi L} u_{t} \\
& =\sum_{j=0}^{\infty} \phi^{j} u_{t-j}+\theta L \sum_{j=0}^{\infty} \phi^{j} u_{t-j} \\
& =u_{t}+\phi \sum_{j=1}^{\infty} \phi^{j-1} u_{t-j}+\theta \sum_{j=1}^{\infty} \phi^{j-1} u_{t-j}
\end{aligned}
$$

Exercise: Show that the autocovariances

$$
\gamma(k)=\operatorname{Cov}\left(x_{t}, x_{t-k}\right)
$$

of a causal ARMA $(1,1)$ process

$$
x_{t}-\phi x_{t-1}=u_{t}+\theta u_{t-1}
$$

satisfy

$$
\gamma(k)=\phi \gamma(k-1) \text {, if } k>1 .
$$

Solution: Multiplying the difference equation by x_{t-k} and taking expectations we obtain for $k>1$

$$
\begin{gathered}
x_{t} x_{t-k}-\phi x_{t-1} x_{t-k}=u_{t} x_{t-k}+\theta u_{t-1} x_{t-k}, \\
E x_{t} x_{t-k}-\phi E x_{t-1} x_{t-k}=E u_{t} x_{t-k}+\theta E u_{t-1} x_{t-k}, \\
\gamma(k)-\phi \gamma(k-1)=0 .
\end{gathered}
$$

Exercise: Find the stationary solution of the noncausal univariate $\operatorname{AR}(1)$ equation

$$
x_{t}=\phi x_{t-1}+u_{t},|\phi|>1
$$

Solution: $\quad x_{t}=\phi x_{t-1}+u_{t} \Rightarrow x_{t-1}=\frac{1}{\phi} x_{t}-\frac{1}{\phi} u_{t}$

$$
\begin{gathered}
\Rightarrow x_{t}=\frac{1}{\phi} x_{t+1}-\frac{1}{\phi} u_{t+1} \\
=\frac{1}{\phi}\left(\frac{1}{\phi} x_{t+2}-\frac{1}{\phi} u_{t+2}\right)-\frac{1}{\phi} u_{t+1} \\
=\frac{1}{\phi^{2}} x_{t+2}-\frac{1}{\phi^{2}} u_{t+2-\frac{1}{\phi} u_{t+1}}^{\vdots} \\
=-\sum_{j=1}^{\infty} \frac{1}{\varphi^{j}} u_{t+j}
\end{gathered}
$$

Exercise: Show that the stationary solution

$$
x_{t}=-\sum_{j=1}^{\infty} \frac{1}{\varphi^{j}} u_{t+j}
$$

of the noncausal univariate $\operatorname{AR}(1)$ equation

$$
x_{i}=\phi x_{t-1}+u_{t},|\phi|>1, \operatorname{var}\left(u_{t}\right)=\sigma^{2}
$$

also satisfies the causal univariate equation

$$
x_{i}=\frac{1}{\phi} x_{t-1}+v_{t}
$$

for a suitable white noise v.
Solution: If $v_{t}=x_{t}-\frac{1}{\phi} x_{t-1}$

$$
\begin{aligned}
& =-\frac{1}{\phi} x_{t-1}+x_{t} \\
& =\frac{1}{\phi} \sum_{j=1}^{\infty} \frac{1}{\varphi^{j}} u_{t-1+j}-\sum_{j=1}^{\infty} \frac{1}{\varphi^{j}} u_{t+j} \\
& =\frac{1}{\phi^{2}} u_{t}+\left(\frac{1}{\phi^{3}}-\frac{1}{\phi}\right) u_{t+1}+\left(\frac{1}{\phi^{4}}-\frac{1}{\phi^{2}}\right) u_{t+2}+\ldots,
\end{aligned}
$$

then the mean of v_{t} is zero 0 and its variance is given by

$$
\begin{aligned}
& \sigma^{2}\left(\frac{1}{\phi^{4}}+\left(\frac{1}{\phi^{3}}-\frac{1}{\phi}\right)^{2}+\left(\frac{1}{\phi^{4}}-\frac{1}{\phi^{2}}\right)^{2}+\ldots\right) \\
= & \sigma^{2}\left(\frac{1}{\phi^{4}}+\left(\frac{1}{\phi^{6}}+\frac{1}{\phi^{8}}+\ldots\right)-2\left(\frac{1}{\phi^{4}}+\frac{1}{\phi^{6}}+\ldots\right)+\left(\frac{1}{\phi^{2}}+\frac{1}{\phi^{4}}+\ldots\right)\right) \\
= & \frac{\sigma^{2}}{\phi^{2}} .
\end{aligned}
$$

Moreover, if $h>0$, then

$$
\begin{aligned}
E v_{t} v_{t+h} & =\sigma^{2}\left(\left(\frac{1}{\phi^{h+2}}-\frac{1}{\phi^{h}}\right) \frac{1}{\phi^{2}}+\left(\frac{1}{\phi^{h+3}}-\frac{1}{\phi^{h+1}}\right)\left(\frac{1}{\phi^{3}}-\frac{1}{\phi}\right)+\ldots\right) \\
& =\frac{\sigma^{2}}{\phi^{h}}\left(\left(\frac{1}{\phi^{2}}-\frac{1}{\phi^{0}}\right) \frac{1}{\phi^{2}}+\left(\frac{1}{\phi^{3}}-\frac{1}{\phi^{1}}\right)\left(\frac{1}{\phi^{3}}-\frac{1}{\phi}\right)+\ldots\right) \\
& =\frac{\sigma^{2}}{\phi^{h}}\left(\left(\frac{1}{\phi^{4}}-\frac{1}{\phi^{2}}\right)+\left(\frac{1}{\phi^{6}}-2 \frac{1}{\phi^{4}}+\frac{1}{\phi^{2}}\right)+\left(\frac{1}{\phi^{8}}-2 \frac{1}{\phi^{6}}+\frac{1}{\phi^{4}}\right)+\ldots\right) \\
& =0 .
\end{aligned}
$$

Thus v is white noise.
This exercise shows that the stationary solution of the noncausal equation also satisfies a causal equation. Nothing will therefore be lost if we consider only causal equations.

Exercise: Show that the invertible $\mathrm{MA}(1)$ model

$$
x_{t}=u_{t}+\frac{1}{2} u_{t-1}, \operatorname{var}\left(u_{t}\right)=4
$$

implies the same autocovariance function as the noninvertible MA(1) model

$$
x_{t}=u_{t}+2 u_{t-1}, \operatorname{var}\left(u_{t}\right)=1 .
$$

Remark: Since we can only observe x_{t} and not u_{t}, we cannot distinguish between the two models. They are therefore called observationally equivalent.

Exercise: Use the model-selection criteria AIC and BIC to find the "best" $\operatorname{ARMA}(p, q)$ model with $p \leq 3, q \leq 3$ for the (demeaned) growth rates of the quarterly GDP.

Hint: Trying to strike a balance between the goodness of fit (measured by the \log likelihood L) and the complexity of the model (measured by the total number $p+q+1$ of model parameters $\phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots, \theta_{q}, \sigma^{2}$), these criteria select that model which minimizes

$$
\operatorname{AIC}(p, q)=-2 L+2(p+q+1)
$$

and

$$
\operatorname{BIC}(p, q)=-2 L+(p+q+1) \log (n),
$$

respectively.

```
AIC <- BIC <- matrix(nrow=4,ncol=4)
for (p in 0:3) for (q in 0:3) {
    h <- arima(r.dm,order=c(p,0,q),include.mean=F)
    AIC[p+1,q+1] <- -2*h$loglik+2*(p+q+1)
    BIC[p+1,q+1] <- -2*h$loglik+(p+q+1)*log(n) }
0:3;}\operatorname{cbind(0:3,AIC); 0:3; cbind(0:3,BIC)
```

```
    0
    -1755.977 -1784.283-1795.342-1795.452
    -1794.456 -1793.917 -1795.024 -1793.477
    -1794.800 -1794.174 -1796.062 -1792.485
    -1795.332 -1794.940-1801.370 -1800.740
    0
-1752.368 -1777.064 -1784.514 -1781.014
    -1787.237-1783.089-1780.586-1775.430
    -1783.971 -1779.737-1778.014-1770.828
    -1780.894 -1776.893 -1779.713 -1775.473
```

AIC selects the ARMA(3,2) model and BIC selects the ARMA $(1,0)$ model.

Unfortunately, AIC and BIC rarely select the same model. And to make matters worse, there are a lot more modelselection criteria that could be used. So it seems that automatic model selection with a model-selection criterion still contains a subjective element because we have to select the model-selection criterion first.

Exercise: Plot the (demeaned) growth rates of the quarterly GDP, the residuals from the $\operatorname{ARMA}(1,0)$ model, which is the best model for this time series according to BIC, and the fitted values.

```
\(\operatorname{par}(\) mfrow=c(3,1),mar=c(2,2,1,1))
p <-1; \(q<-\mathbf{0}\)
\(\mathrm{h}<-\operatorname{arima}(\mathrm{r} . d m\), order \(=\mathrm{c}(\mathrm{p}, 0, \mathrm{q})\),include.mean=FALSE,
        transform.pars=TRUE)
```

$\operatorname{plot}\left(d[2: n], r . d m, t y p e=' 1{ }^{\prime \prime}, y \lim =c(-0.04,0.04)\right)$
plot(d[2:n],h\$residuals,type='l'",ylim=c(-0.04,0.04))
plot(d[2:n],r.dm-h\$residuals,type=' 1 "',ylim=c(-0.04,0.04))

This ARMA model explains very little. The residuals are almost of the same size as the data.

The joint probability density of a sample x_{1}, \ldots, x_{n} from a Gaussian AR(1) process

$$
x_{t}=\phi x_{t-1}+u_{t}
$$

with i.i.d. $N\left(0, \sigma^{2}\right)$ innovations u_{t} is given by

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right) \\
= & f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{1}, x_{2}\right) \ldots f\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
= & f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{2}\right) \ldots f\left(x_{n} \mid x_{n-1}\right) \\
= & f\left(x_{1}\right) \prod_{t=2}^{n} f\left(x_{t} \mid x_{t-1}\right)
\end{aligned}
$$

$$
=\frac{1}{\sqrt{2 \pi \frac{\sigma^{2}}{1-\rho^{2}}}} \exp \left(-\frac{x_{1}^{2}}{2 \frac{\sigma^{2}}{1-\rho^{2}}}\right) \prod_{t=2}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{t}-\phi x_{t-1}\right)^{2}}{2 \sigma^{2}}\right) .
$$

The maximum likelihood (ML) estimates and the conditional ML estimates of the parameters ϕ and σ^{2} are obtained by maximization of the log likelihood function and the log likelihood function conditioned on the first observation, respectively, with respect to ϕ and σ^{2}.

We have

$$
\begin{aligned}
& \log f\left(x_{1}, \ldots, x_{n} ; \phi, \sigma^{2}\right) \\
= & -\frac{1}{2} \log \left(\frac{2 \pi \sigma^{2}}{1-\rho^{2}}\right)-\frac{x_{1}^{2}\left(1-\rho^{2}\right)}{2 \sigma^{2}} \\
& -\frac{n-1}{2} \log \left(2 \pi \sigma^{2}\right)-\sum_{t=2}^{n} \frac{\left(x_{t}-\phi x_{t-1}\right)^{2}}{2 \sigma^{2}} .
\end{aligned}
$$

and

$$
\begin{aligned}
& \log f\left(x_{2}, \ldots, x_{n} \mid x_{1}\right) \\
= & -\frac{n-1}{2} \log \left(2 \pi \sigma^{2}\right)-\sum_{t=2}^{n} \frac{\left(x_{t}-\phi x_{t-1}\right)^{2}}{2 \sigma^{2}} .
\end{aligned}
$$

Exercise: Find the conditional ML estimates of the parameters ϕ and σ^{2}.

