
We create a histogram to graphically summarize 

the distribution of the data set  

              4.5,11,14,16,17,18,21.5,23,26. 

It shows the number of values that fall into each of  

the class intervals (or bins)   

   (0,5], (5,10], (10,15], (15,20], (20,25], (25,30]. 

 

A histogram is a discontinuous function. 

It inherits its jumps from its rectangular building blocks. 

 

 

 

 

 

 

 

 

The relative frequency histogram and the density 

histogram are normalized variants of the histogram. 

In the case of the relative frequency histogram, the 

heights of all histogram bars sum to one. 

 

In the case of the density histogram, the histogram has 

a total area of one. 
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The appearance of a histogram depends strongly on 

the origin and the width of the class intervals. 

 

x <- c(4.5,11,14,16,17,18,21.5,23,26) # data 

par(mfrow=c(2,2),mar=c(2,4,1,1))  

# subsequent figures in 2x2 array; narrow margins 

 

hist(x,breaks=seq(0,30,5),right=TRUE,main="")  

# right-closed (left-open) intervals: (0,5],...,(25,30] 

 

hist(x,breaks=seq(0,30,10),right=TRUE,main="")  

 

hist(x,breaks=seq(2.5,32.5,5),right=TRUE,main="")     

 

hist(x,breaks=seq(2.5,32.5,10),right=TRUE,main="")  
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The dependency of a histogram on the origin of the bins 

can be removed if the rectangular boxes are centered  

around the individual data points.  
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To avoid jumps we may use triangular weights.    

 
 

 

 

 

 

 

The resulting function is continuous. 

But it is not differentiable because there are kinks. 

 

 

 

 
 

 

  

 

 0 10 20 30

11 144.5 16 17 18 21.5 23 26

 

 0 10 20 30

11 144.5 16 17 18 21.5 23 26



 

 

 

4

Basic rectangular and triangular functions are given by  
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respectively. Both functions are non-negative and  integrate 

to one, hence they can be regarded as density functions.  
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The rescaled density functions  
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imply zero means and unit variances. 

Given a standardized density w(s), the density  

                                  v(u)=
hh
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obtained via the transformation 

                                      s → h s + x 

is centered around x and implies a standard deviation of h. 

If x1,…,xn is a random sample from an unknown density f,   
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is called a kernel density estimator of f, the function w is 

called the kernel, and the parameter h is called the 

bandwidth.   
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We use the R function density for density estimation. 

par(mfrow=c(1,2),mar=c(2,2,1,1)) 

plot(density(x,kernel="rectangular",bw=2),main="") 

plot(density(x,kernel="triangular",bw=2),main="") 

 

A kernel density estimator inherits its smoothness 

properties from the kernel. The R function density allows 

also the choice of smooth kernels such as the Gaussian 

kernel 
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The bandwidth h controls the resolution. The larger h,  the 

lower the resolution. The choice of the bandwidth h is by 

far more important than that of the kernel w. 

par(mfrow=c(2,3),mar=c(2,2,1,1)) 

for (b in c(1.25,2.5)) { 

plot(density(x,kernel="rectangular",bw=b),main="")    

plot(density(x,kernel="triangular",bw=b),main="") 

plot(density(x,kernel="gauss",bw=b),main="") } 
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Estimating the density of index returns 

We download the daily historical data of the S&P 500 Index 

from Yahoo!Finance as a csv file ^GSPC.csv into our  

working directory C:\SP500, import the data into R, and  

calculate the log returns. 

setwd("C:/SP500")   # R uses / as path separator 

Y <- read.csv("^GSPC.csv",header=T,na.strings="null") 

# in the downloaded file, missing values are represented  

# by the string "null" rather than by the symbol NA 

Y <- na.omit(Y)   # rows with missing values are omitted 

N <- nrow(Y); D <- as.Date(Y[,1])   # dates in column 1 

cl <- log(Y[,6])   # adjusted close prices in column 6  

r <- cl[2:N]-cl[1:(N-1)]; n <- N-1 # n (log) returns    

We use the Gaussian kernel to estimate the density of the 

returns and compare the estimated density of the returns with 

a normal density with the same mean and variance.  

par(mfrow=c(1,1),mar=c(2,2,1,1)) 

x <- seq(-0.05,0.05,0.001); R <- range(x) 

plot(density(r,kernel="g",bw=0.0025),xlim=R,main="") 

lines(x,dnorm(x,mean=mean(r),sd=sd(r)),col="red") 
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Determining the tail behavior 

If the inverse function of a distribution function F:  →[0,1] 

exists and q∈(0,1), then the value πq=F
-1

(q) is called the q- 

quantile.  

Clearly, πq satisfies F(πq)=F(F
-1

(q))=q. 

To check whether a sample x1,…,xn comes from a specified 

theoretical distribution function F we might plot the “sample 

quantiles”  
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of F, where 

                                 x(1)≤x(2)≤…≤x(n) 

is the sample arranged in ascending order. 

If the sample quantiles are approximately of the same size as 

the theoretical quantiles, the points  

(F
-1

(
1+n

i ),x(i)), i=1,…,n, 

should roughly lie on a straight line with intercept zero and 

slope one. 

We create a quantile-quantile (Q-Q) plot to “test” the 

returns of the S&P 500 Index against a normal distribution  

with the same mean and variance. 

par(mfrow=c(1,1),mar=c(2,2,1,1),pch=20) 

q <- (1:n)/(n+1) 

plot(qnorm(q,mean=mean(r),sd=sd(r)),sort(r)) 

abline(a=0,b=1,col="red") 


