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A family Xt, tÎZ, of random vectors Xt: W®Rk defined ona probability space (Ω,A,P) is called a stationary processif the mean vectors
𝐸𝑋𝑡 = 𝐸 𝑋𝑡1⋮𝑋𝑡𝑘

=
𝐸𝑋𝑡1⋮𝐸𝑋𝑡𝑘

and the autocovariance matrices
cov(Xt,Xt-h)=E(Xt-EXt)(Xt-h-EXt-h)T

are independent of t.
The autocovariance function of a stationary process isdefined by

G(h)=cov(X0,X0-h).
Exercise: Show that G(-h)=G T(h). MS

A stationary process is called white noise if its auto-covariance function satisfies
G(h)=0 " h¹0.

Since G(0) does not have to be a diagonal matrix, any twocomponents of white noise can be correlated with each othercontemporaneously.
A stationary process X is called a first order autoregressiveprocess (or AR(1) process) if it can be expressed as

𝑋𝑡 =
𝑋𝑡1⋮𝑋𝑡𝑘

=
𝜙11 ⋯ 𝜙1𝑘⋮ ⋱ ⋮
𝜙𝑘1 ⋯ 𝜙𝑘𝑘

𝑋(𝑡−1)1⋮𝑋(𝑡−1)𝑘
+

𝑈𝑡1⋮𝑈𝑡𝑘
= 𝛷𝑋𝑡−1 + 𝑈𝑡,

where U is white noise with mean vector 0.
Each component of an AR(1) process depends not only onlagged values of itself but also on lagged values of the othercomponents.
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1 For example, any Hermitian matrix (a complex square matrix thatis equal to its own conjugate transpose) is diagonalizable. Thus,real symmetric matrices are diagonalizable.

Substituting in an AR(1) equation
Xt=FXt-1+Ut

first FXt-2+Ut-1 for Xt-1 and then FXt-3+U3 for Xt-2, … gives
Xt=F(FXt-2+Ut-1)+Ut=F 2Xt-2+FUt-1+Ut=F 2(FXt-3+Ut-2)+FUt-1+Ut=F 3Xt-3+F 2Ut-2+FUt-1+Ut⋮

=F mXt-m+
Suppose that F is diagonalizable1, i.e., there is aninvertible matrix C such that L=C-1FC is a diagonalmatrix. It then follows from

L=C-1FCÛ F=CLC-1

that F 2=FF=CLC-1CLC-1=CL2C-1
F 3=F 2F=CL2C-1CLC-1=CL3C-1

⋮
F m=CLmC-1.

Thus,
F m = 𝐶 𝜆1 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝜆𝑘

𝑚
𝐶−1

= 𝐶 𝜆𝑚1 ⋯ 0
⋮ ⋱ ⋮0 ⋯ 𝜆𝑚𝑘

𝐶−1

will vanish as m®¥ only if the not necessarily realnumbers l1,…,lk have modulus less than 1. MR
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A k´k matrix F is diagonalizable if and only if it has klinearly independent eigenvectors (diagonalizationtheorem).
Proof:
Suppose that c1,…,ck are linearly independent eigen-vectors with eigenvalues l1,…,lk. Then

F = F(c1,…,ck)(c1,…,ck)-1
= (Fc1,…,Fck)(c1,…,ck)-1
= (l1c1,…,lkck)(c1,…,ck)-1

= (c1,…,ck) 𝜆1 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝜆𝑘
(c1,…,ck)-1.

If
F = (c1,…,ck) 𝜆1 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝜆𝑘

(c1,…,ck)-1,
then

(Fc1,…,Fck) = F(c1,…,ck)
= (c1,…,ck) 𝜆1 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝜆𝑘

= (l1c1,…,lkck).
MD
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Exercise: Show that if a 2´2 matrix F has 2 differenteigenvalues l1 and l2, the corresponding eigenvectors c1and c2 will be linearly independent.
Solution: Since l1 and l2 are different, at least one ofthem, say l1, is not equal to zero. Assuming that theantithesis

c1=nc2 for some n¹0
is valid, we obtain

Fc1=nFc2,
l1c1=nl2c2,

and c1= nc2,
Since ¹1 and c1, c2¹0, this is in contradiction with the
antithesis. ME

Exercise: Find the eigenvalues l1 and l2 of the matrix
F= .

Hint: If c is an eigenvector with eigenvalue l, i.e.,
Fc=lcor, equivalently,

(lI-F)c=0,
then the invertibility of the matrix lI-F would implythat c=(lI-F)-10=0,
which is inconsistent with the requirement that c mustbe a non-zero vector. The eigenvalues can therefore befound by solving the equation

det(lI-F)=0. MV
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If F is a k´k matrix, the characteristic polynomial det(lI-
F) has degree k. According to the fundamental theoremof algebra it has therefore k (complex) roots if each root iscounted with its algebraic multiplicity. Since eigenvectorscorresponding to different eigenvalues are independent, Fcan only be non-diagonalizable if there exists aneigenvalue with algebraic multiplicity ma>1 andgeometric multiplicity mg<ma. The geometric multiplicityof an eigenvalue is the number of linearly independenteigenvectors with that eigenvalue.
Exercise: Show that the matrix MN

F=

is non-diagonalizable.
Hint: The eigenvectors corresponding to an eigenvalue lcan be found by solving the equation (lI-F)c=0 for c.

The condition that all the eigenvalues of F are less than 1in absolute value, i.e.,
³1 Þ det(F-zI)¹0,

is equivalent to
³1 Þ det(- (F-zI))¹0,
³1 Þ det(I- F)¹0,

and £1 Þ det(I-zF)¹0.
Remark: If all roots of the polynomial det(I-zF) lie out-side of the unit circle, the sequence F, F2, F3, … isabsolutely summable and

converges (componentwise) in mean square to Xt.
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Using lag-operator notation the equation
Xt-FXt-1=Ut

can also be written as
(I-FL)Xt=Ut ,

where I-FL is a matrix-valued polynomial. For example,in the bivariate case we have

.

A stationary process X is called an autoregressiveprocess of order p (or AR(p) process) if it can beexpressed as
Xt=F1Xt-1+…+FpXt-p+Ut

or, equivalently, as
Xt-F1Xt-1-…-FpXt-p=Ut ,

where U is white noise with mean vector 0.
Using lag-operator notation, the latter equation can alsobe written as

F(L)Xt=Ut,where
F(L)=I-F1L-…-FpLp

is a matrix-valued polynomial.
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Let X be a general linear process represented by
Xt= ,

where U is white noise with EUt=0 and var(Ut)=S.We have
EXt= =0

and
GX(k)=cov(Xt,Xt-k)=E

=
= .

Since neither EXt nor cov(Xt,Xt-k) depend on t, the processX is weakly stationary. PL

The spectral densities of U and X are given by
fU(w) = GU(k) = ,
fX(w) = GX(k)

= 12𝜋  ∑∞𝑘=−∞ 𝑒−𝑖𝜔𝑘∑∞𝑗=−∞ 𝛹 𝑗+𝑘𝛴𝛹𝑇𝑗
=
= eiw(j-k)

= e-iwjS eiw(j+k)

= e-iwj S ( e-iwj )*.
PD
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A representation
(I-FL)Xt=Ut

of an AR(1) process X is called causal if Xt can beexpressed in terms of present and past shocks, i.e.,
Xt=( )Ut= .

Its spectral density is given by
fX(w)= e-iwj S ( e-iwj )*

= S .
Exercise: Derive the sum formula PG

=(I-F n+1)(I-F)-1
for a geometric series of matrices.
Hint: Multiply each side of the equation by I-F.

Remark: Moreover, if all eigenvalues of F have modulusless than 1, we have
=(I-F)-1.

Exercise: Show that PV
e-iwj=(I-Fe-iw)-1,

if all eigenvalues of F have modulus less than 1.
Analogously,
fX(w)= (I-F1e-iw-…-Fpe-iwp)-1S ((I-F1e-iw-…-Fpe-iwp)-1)*
is the spectral density of an AR(p) process X with causalrepresentation

(I-F1L-…-FpLp)Xt=Ut .
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Exercise: Reexamine the relationship between changes inthe industrial production and changes in the duration ofunemployment with parametric methods.
· Write an R function for the calculation of the spectraldensity of a vector autoregressive process.
var.spec <- function(fr,AR.p) {# fr … vector of frequencies# AR.p … AR(p) model estimated by R function arnf <- length(fr); p <- AR.p$ordersigma <- AR.p$var.pred; k <- length(sigma[1,])Id <- diag(1,nrow=k,ncol=k) # identity matrixsp <- array(dim=c(nf,k,k))for (w in 1:nf) {A <- Idfor (l in 1:p) A <- A-AR.p$ar[l,,]*exp(-1i*fr[w]*l)A <- solve(A) # inverse of Asp[w,,] <- A%*%sigma%*%t(Conj(A)) }return(sp/(2*pi)) }
· Estimate AR models of order p=3 and p=6, respectively.

AR.3 <- ar(xy,order.max=3,aic=F,demean=T)AR.6 <- ar(xy,order.max=6,aic=F,demean=T)# aic=F … order is fixed, not selected automatically
# AR.3$ar: array of dim (3,2,2) with AR coefficients
AR.3$ar[1,,] # lag 1Series 1 Series 2Series 1 0.2601357 0.007842615Series 2 -0.5299257 -0.373324819AR.3$ar[2,,] # lag 2Series 1 Series 2Series 1 0.1446515 0.001099141Series 2 -1.4206001 -0.173167764AR.3$ar[3,,] # lag 3Series 1 Series 2Series 1 0.1706967 -0.002957159Series 2 -1.4166969 -0.011742439AR.3$var.pred # variance not explained by AR modelSeries 1 Series 2Series 1 4.423710e-05 -6.444694e-06Series 2 -6.444694e-06 3.076618e-03
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· Estimate the univariate spectral densities.
par(mfrow=c(2,1),mar=c(2,2,1,1))p <- spec.pgram(xy[,1],taper=0,detr=F,fast=F,plot=F)f <- p$freq*2*pi; plot(f,p$spec/(2*pi),type="l")sp.3 <- var.spec(f,AR.3); lines(f,sp.3[,1,1],col="red")sp.6 <- var.spec(f,AR.6); lines(f,sp.6[,1,1],col="blue")
p <- spec.pgram(xy[,2],taper=0,detr=F,fast=F,plot=F)plot(f,p$spec/(2*pi),type="l")lines(f,sp.3[,2,2],col="red")lines(f,sp.6[,2,2],col="blue")
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· Estimate the squared coherency and the phase spectrum.
par(mfrow=c(2,1))plot(f,Mod(sp.6[,1,2])^2/(sp.6[,1,1]*sp.6[,2,2]),type="l",col="blue")lines(f,Mod(sp.3[,1,2])^2/(sp.3[,1,1]*sp.3[,2,2]),col="red")
plot(f,Arg(sp.6[,1,2]),type="l",col="blue")lines(f,Arg(sp.3[,1,2]),type="l",col="red")

The squared coherency is large at the low frequencies.There the slope of the phase spectrum is approximately2, which indicates that changes in the duration ofunemployment lag two months behind changes inindustrial production.
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· Estimate the cross-correlation function.
ccf(x,y,lag.max=25,type="correlation")

Significant negative correlations at small negative lagsare in line with the results of the cross spectral analysis.
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· Estimate the cospectrum and the quadrature spectrum.
par(mfrow=c(2,1))plot(f,Re(sp.6[,1,2]),type="l",col="blue")lines(f,Re(sp.3[,1,2]),type="l",col="red")abline(h=0,lty="dashed") # dashed horizontal line
plot(f,-Im(sp.6[,1,2]),type="l",col="blue")lines(f,-Im(sp.3[,1,2]),type="l",col="red")abline(h=0,lty=2)

The cospectrum indicates that the overall negativerelationship between the two variables is mainly due tothe low frequencies.
The quadrature spectrum does not consistently deviatefrom zero enough to allow a meaningful interpretation.
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A stationary process X is called an autoregressivemoving average process of order (p,q) (or ARMA(p,q)process) if it can be expressed as
Xt=F1Xt-1+…+FpXt-p+Ut+Q1Ut-1+…+QqUt-q

or, equivalently, as
Xt-F1Xt-1-…-FpXt-p=Ut+Q1Ut-1+…+QqUt-q,

where U is white noise with mean vector 0.
Using lag-operator notation, the latter equation can alsobe written as

F(L)Xt=Q(L)Ut,where
F(L)=I-F1L-…-FpLpand
Q(L)=I+Q1L+…+QqLq

are matrix-valued polynomials.

An ARMA(p,0) process is an AR(p) process. AnARMA(0,q) process is also called a moving averageprocess of order q (or MA(q) process).
The ARMA(p,q) equation

(I-F1L-…-FpLp)Xt=( I+Q1L+…+QqLq)Ut
is said to be causal if

£1 Þ det(I-zF1-…-zpFp)¹0.
It is said to be invertible if

£1 Þ det(I+zQ+…+zqQq)¹0.
Exercise: Show that the bivariate AR(1) process

- =
is causal and invertible. PC
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Exercise: Show that the bivariate MA(2) process
= + +

is causal and invertible. PI
Exercise: Show that the bivariate ARMA(1,1) process

- = +
is causal and invertible. PA

It does not make sense to estimate the parameter matrices
F1,…,Fp,Q1,…,Qq, and S of an ARMA(p,q) process if theyare not unique.
To ensure identifiability in the univariate case, where F(L)and Q(L) are just scalar polynomials, we must require, inaddition to causality and invertibility, that F(z) and Q(z)have no common zeros. For example, the equation

(1- L2)Xt=(1+ L)Ut
can be written more parsimoniously as

(1- L)Xt=Ut,
because the polynomials

1- z2=(1+ z)(1- z)
and 1+ z
have a common zero.
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In the multivariate case, the matrix-valued polynomials
F(z) and Q(z) can have a common left factor even ifdet(F(z)) and det(Q(z)) have no common zero. To avoidthe difficulties involved in the identification of multivariateARMA processes, many time series analysts use onlymultivariate AR models for the modeling of multivariatetime series.
Exercise: Show that the equation PU

- = +
can be written more parsimoniously as

- =

although the polynomials
det(F(z))=det(I- z)

and
det(Q(z))=det(I+ z)

have no common zero.
Hint: Multiply both F(z) and Q(z) by Q -1(z)= .

Remark: The inverse of the matrix-valued polynomial
Q(z) is also a matrix-valued polynomial. Its determinant isa constant unequal to zero. Such a matrix-valuedpolynomial is called unimodular.


