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Consider a discrete-time random walk

xt=u1+…+ut

with i.i.d. N(0,s2) increments ut.

Exercise:  Show that U1

          (i) xt ~N(0,ts2),

          (ii) s<t Þ xt-xs ~N(0,(t-s)s2),

         (iii) q<r£s<t Þ xr-xq and xt-xs are independent.

Exercise:  Show that the discrete-time random walk
satisfies the difference equation

xt=fxt-1+ut

with x0=0 and f=1. U2
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Exercise:  Compare the daily quotes of the S&P 500 index
(symbol: ^GSPC) with realizations of a random walk.
Download the historical prices from Yahoo!Finance as a csv
file ^GSPC.csv into the working directory C:\SP500.
Import the data into R and plot the log closing prices and 3
realizations of a random walk (with drift) with matching
parameters (starting value, mean and variance of log returns).
setwd("C:/SP500")   # R uses / as path separator
Y<- read.csv("^GSPC.csv",header=T,na.strings="null")
# in the downloaded file, missing values are represented
# by the string "null" rather than by the symbol NA
Y <- na.omit(Y)   # rows with missing values are omitted
N <- nrow(Y); D <- as.Date(Y[,1])   # dates in column 1
cl <- log(Y[,6])   # adjusted close prices in column 6
r <- cl[2:N]-cl[1:(N-1)]; n <- N-1 # n (log) returns
my <- mean(r); sigma <- sd(r)        # sample moments
par(mar=c(2,2,1,1)); COL <- c("red","green","blue")
plot(D,cl,type="l",ylim=range(cl)+c(-1,2))
for (j in 1:3) { u <- rnorm(n,m=my,sd=sigma)
    x <- cumsum(c(cl[1],u)); lines(D,x,col=COL[j]) }
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Exercise:  Compare the (log) returns with matching
Gaussian increments and resampled returns.
par(mar=c(0.1,2,0.1,0.1)); YL <- c(-0.09,0.09)
plot(r,type="l",ylim=YL)   # returns

u <- rnorm(n,m=my,sd=sigma); plot(u,t="l",ylim=YL)

Obviously, the density of the returns has more probability
mass near the center as well as in the tails than a normal
density. A more realistic sample of synthetic returns can be
obtained by resampling the given returns.
u <- sample(r,size=n,replace=T); plot(u,t="l",ylim=YL)

Resampling blocks of returns rather than individual returns
produces clusters of different volatility.
# k=n/b nonoverlapping blocks of length b:
b <- 250; k <- trunc(n/b); K  <- sample(1:k,k,replace=T)
u <- NULL; for (j in K) u <- c(u,r[(j-1)*b+1:b])

# k=n/b overlapping blocks of length b:
b <- 250; k <- trunc(n/b); K  <- sample(0:(n-b),k,T)
u <- NULL; for (j in K) u <- c(u,r[j+1:b])

# stationary bootstrap: blocks of random length
q <- 0.996; K <- sample(1:n,n,T) # mean length=1/(1-q)
for (i in 2:n) if (runif(1)<q) # increase block with prob. q
K[i] <- ifelse(K[i-1]!=n,K[i-1]+1,1); u <- r[K]
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Given n observations x1,…,xn from a discrete-time random
walk, a simple continuous-time process can be defined by

xn(t)=x[tn], tÎ[0,1],

where x0=0 and [tn] is the greatest integer less than or
equal to tn.

Exercise:  Show that as n®¥ UC
                  (i)   Var(xn(1)) ®¥
and            (ii)  0<na Var(xn(1))<¥Û a= 2

1- .

Exercise:  Show that the continuous-time process UN
*
nx (t)= 2

1-n xn(t)= 2
1-n x[tn], tÎ[0,1],

satisfies    (i) *
nx (0)=0,

              (ii) *
nx (t) ¾®¾L  N(0,ts2),

                (iii) s<t Þ *
nx (t)- *

nx (s) ¾®¾L N(0,(t-s) s2),

              (iv) q<r£s<t Þ *
nx (r)- *

nx (q) and *
nx (t)- *

nx (s)
                      are independent if n is sufficiently large.

Exercise: Plot realizations of the discrete-time process xt

and the continuous-time process *
nx (t) for s2=1 and n=10.

par(mar=c(2,2,0.1,0.1),pch=19); n <- 10
t <- c(0:n); x <- cumsum(c(0,rnorm(n))); plot(t,x)

t <- t/n; x <- x/n^0.5; plot(t,x,type="s")
# "s": stair steps (move first horizontal, then vertical)
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Exercise:  Plot realizations of the process *
nx (t) for s2=1

and n=100, 100000.
As n increases the height of the jumps in the graph of

*
nx (t) decreases. We can therefore expect continuity in the

limit. Of course, this does not imply smoothness.

A continuous-time process B(t), tÎ[0,1], is called
Brownian motion with variance s2 if

(i) B(0)=0,

(ii) B(t)~N(0,ts2),

(iii) s<t Þ B(t)-B(s)~N(0,(t-s) s2),

(iv) q<r£s<t Þ B(r)-B(q) and B(t)-B(s) are independent.

Brownian motion with variance 1 is called standard
Brownian motion or Wiener process.
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Exercise:  Show that UB

s<t Þ Cov(B(s),B(t))=ss2.

Solution:

Cov(B(s),B(t)) = Cov(B(s),(B(t)-B(s))+B(s))

                        = Cov(B(s),B(t)-B(s))+Cov(B(s),B(s))

                        = Cov(B(s)-B(0),B(t)-B(s))+Var(B(s))

                        = 0+ss2

It can be shown that any realization of Brownian motion
is everywhere continuous and nowhere differentiable
with probability 1.

Indeed, for 0<h®0 we have

E(B(t+h)-B(t))2 = Var(B(t+h)-B(t))

                                     = ((t+h)-t)s2

                                     = hs2 ® 0

and
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For any fixed 0<t£1, the central limit theorem applied to
the mean
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In contrast, the functional central limit theorem concerns
the asymptotic behavior of *

nx  regarded as a stochastic
function of t, i.e.,

*
nx ¾®¾L B,

where B is Brownian motion with variance s2.

For the extension of convergence in law to random
functions, it is required, among other conditions, that

( *
nx (t1),…, *

nx (tk))T ¾®¾L  (B(t1),…,B(tk))T

for any 0 £ t1 < … < tk £ 1.

The continuous mapping theorem (CMT):

For a sequence of random variables xt and a continuous
function g, we have

xn ¾®¾L x Þ g(xn) ¾®¾L g(x).

Analogously, we have for a sequence of stochastic
functions fn and a continuous functional g,

fn ¾®¾L f Þ g(fn) ¾®¾L g(f).

Functionals map a function into a real number and a
stochastic function into a random variable, respectively.
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Under the unit root hypothesis RU

H0: f=1,

the expected value of the denominator of the statistic
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which implies that we need to multiply f̂ -1 by n in order
to obtain a nondegenerate asymptotic distribution.

The estimator f̂  is called a superconsistent estimator,
because it converges to f=1 at a faster rate than usual.
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We cannot use the statistics (n-1)(f̂ -1) or n(f̂ -1) to test
the unit root hypothesis

H0: f=1

against the alternative hypothesis

HA: f<1

unless we have critical values.

For the calculation of critical values, we do not need to use
the asymptotic distribution of the respective test statistic.
Instead, we can use Monte Carlo techniques. First, we can
generate m pseudo-random samples

u1(j),…,un(j), j=1,…,m,

of N(0,1) variates and then compute f̂  for each sample.
Finally, order statistics are used to estimate the quantiles of
interest.

Exercise: Find critical values for the test statistic n( f̂ -1).
Use n=25, 50, 100, 1000, m=1000,100000, and a=0.05.

m <- 1000; n <- 25; n1 <- n-1; phi1 <- rep(0,m)
for (i in 1:m)
   { u <- rnorm(n); x <- cumsum(u)[1:n1]
     phi1[i] <- sum(x*u[2:n])/sum(x*x)  }  # phi1=phi-1
q <- quantile(phi1,probs=0.05); cr.val <- n*q; cr.val
-7.654794
Analogously, we obtain the remaining values (a=0.05):

n              for m=1000       for m=100000
            25                    -7.7                    -7.3
           50                    -7.7                    -7.8
           100                    -8.1                    -7.8
         1000                    -8.5                    -8.1
Clearly, the values obtained with m=100000 are more
reliable than those obtained with m=1000.
Furthermore, we can use the critical values obtained for
large values of n, e.g., n=1000, as estimates of the critical
values of the asymptotic distribution.
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Exercise: Test H0: f=1 for a synthetic AR(1) series.
x <- arima.sim(list(order=c(1,0,0),ar=0.7),n=25) # f=0.7
n <- 25; x1 <- x[1:(n-1)]
phi <- sum(x1*x[2:n])/sum(x1*x1)
n*(phi-1)
-8.7104
The unit root hypothesis H0 can be rejected, because the
value of the test statistic is less than the critical value for a
sample size of 25, i.e., -8.7104 < -7.3.

Exercise:  Suppose that x1,…,xn are non-stochastic and
u1,…,un are uncorrelated with common mean 0 and
variance s 2. Show that in the linear regression model

ttt uxy += b
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Another way of testing the unit root hypothesis is to
write the model

xt=fxt-1+ut
as

Dxt=xt-xt-1=fxt-1+ut-xt-1=f*xt-1+ut,

where f*=f-1, and reject H0 if the value of the OLS
estimator
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or, alternatively, the conventional OLS t-ratio
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is much smaller than 0. The test based on t is called
Dickey-Fuller test. Clearly, t has neither a t-distribution
nor a limiting normal distribution if f=1.
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A more realistic model is obtained by introducing
additional lags in order to allow for serial correlation:

xt=f1xt-1+…+fpxt-p+ut

Writing the model as

Dxt=(f1-1) xt-1+…+fp xt-p+ut

       =[(f1+…+fp-1)-(f2+…+fp)] xt-1

                                +[(f2+…+fp)-(f3+…+fp)] xt-2

M

                                                    +[(fp-1+fp)-fp] xt-(p-1)

                                                    +fp xt-p+ut

       =(f1+…+fp-1) xt-1-(f2+…+fp)Dxt-1-…-fpDxt-(p-1)+ut

       =f*xt-1+d1Dxt-1+…+dpDxt-p-1+ut

we see that the unit root hypothesis

F(1)=1-f1-…-fp=0

is equivalent to the hypothesis H0: f*=0. RL

Including also a constant term and a linear time trend,
we obtain an even more general model:

Dxt=a+bt+f*xt-1+d1Dxt-1+…+dpDxt-p+ut

The test of the hypothesis H0: f*=0, which is based on the
conventional OLS t-ratio for f*, is called augmented
Dickey-Fuller (ADF) test.

In practice, it is extremely hard to decide whether a
constant term and a time trend should be included and how
many lags should be included. Unfortunately, different
model specifications typically produce different test results.

Exercise: Apply an augmented Dickey-Fuller test to the log
S&P500 series created above.

Hint:

library(tseries)  # the package tseries is loaded
help(adf.test)


