STATE-SPACE MODELS

AND

THE KALMAN RECURSIONS

State-space models

Replacing the deterministic trend component

$$
\mathrm{m}_{\mathrm{t}}=\mathrm{a}+\mathrm{bt}
$$

in the linear trend model

$$
\mathrm{Y}_{\mathrm{t}}=\mathrm{m}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}, \mathrm{t}=1,2,3, \ldots
$$

by a cumulative sum of i.i.d. random variables (random walk)

$$
\mathrm{M}_{\mathrm{t}}=\mathrm{V}_{1}+\ldots+\mathrm{V}_{\mathrm{t}},
$$

we obtain the stochastic trend model

$$
\mathrm{Y}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}, \mathrm{t}=1,2,3, \ldots,
$$

which can be represented in state-space form as

$$
\begin{gathered}
\mathrm{Y}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}, \mathrm{t}=1,2,3, \ldots, \\
\mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}-1}+\mathrm{V}_{\mathrm{t}} \mathrm{t}=1,2,3, \ldots
\end{gathered}
$$

A state-space model consists of two equations. The observation equation (or measurement equation) expresses the observation Y_{t} as a linear function of the state M_{t} plus noise. The state equation (or transition equation) expresses the state M_{t} as a linear function of the previous state $\mathrm{M}_{\mathrm{t}-1}$ plus noise.
All noise terms in the two equations are taken to be uncorrelated with each other and also with the initial state M_{0}.

Replacing the deterministic trend component

$$
\mathrm{m}_{\mathrm{t}}=\mathrm{a}+\mathrm{bt}
$$

in the linear trend model

$$
\mathrm{Y}_{\mathrm{t}}=\mathrm{m}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}, \mathrm{t}=1,2,3, \ldots
$$

first by a random walk with drift

$$
\mathrm{M}_{\mathrm{t}}=\left(\mathrm{b}+\mathrm{V}_{1}\right)+\ldots+\left(\mathrm{b}+\mathrm{V}_{\mathrm{t}}\right)
$$

and then the deterministic drift term b by another random walk

$$
\mathrm{B}_{\mathrm{t}}=\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{t}},
$$

we obtain the local linear trend model, which can be written as

$$
\begin{gathered}
\mathrm{Y}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}, \mathrm{t}=1,2,3, \ldots, \\
\mathrm{M}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}-1}+\mathrm{B}_{\mathrm{t}}+\mathrm{V}_{\mathrm{t}}, \mathrm{t}=1,2,3, \ldots, \\
\mathrm{~B}_{\mathrm{t}}=\mathrm{B}_{\mathrm{t}-1}+\mathrm{W}_{\mathrm{t}}, \mathrm{t}=1,2,3, \ldots,
\end{gathered}
$$

or in state-space form with a 2-dimensional state vector as

$$
\begin{gathered}
Y_{t}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{M_{t}}{B_{t}^{*}}+U_{t}, t=1,2,3, \ldots, \\
\binom{M_{t}}{B_{t}^{*}}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{M_{t-1}}{B_{t-1}^{*}}+\binom{V_{t}}{W_{t}^{*}}, t=1,2,3, \ldots,
\end{gathered}
$$

where $\mathrm{B}_{\mathrm{t}}^{*}=\mathrm{B}_{\mathrm{t}+1}$ and $\mathrm{W}_{\mathrm{t}}^{*}=\mathrm{W}_{\mathrm{t}+1}$.

The Kalman recursions

Consider the state-space model

$$
\mathrm{Y}_{\mathrm{t}}=\mathrm{HX} \mathrm{X}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+1}=\mathrm{FX}_{\mathrm{t}}+\mathrm{V}_{\mathrm{t}}
$$

for the possibly multivariate observations $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}$. Assuming that all covariance matrices are finite and choosing $\mathrm{Y}_{0}=(1, \ldots, 1)^{\mathrm{T}}$, we define the one-step predictor

$$
\hat{X}_{t}=P_{t-1}\left(X_{t}\right)=P\left(X_{t} \mid Y_{t-1}, \ldots, Y_{0}\right)
$$

of X_{t} in terms of $\mathrm{Y}_{\mathrm{t}-1}, \ldots, \mathrm{Y}_{0}$ as the (componentwise) projection of X_{t} onto the closed subspace spanned by the components of $\mathrm{Y}_{\mathrm{t}-1}, \ldots, \mathrm{Y}_{0}$.

Using

$$
\mathrm{J}_{\mathrm{t}}=\mathrm{Y}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\left(\mathrm{Y}_{\mathrm{t}}\right)=\mathrm{H} X_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\left(\mathrm{HX}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}}\right)=\mathrm{H}\left(\mathrm{X}_{\mathrm{t}}-\hat{X}_{\mathrm{t}}\right)+\mathrm{U}_{\mathrm{t}}
$$

$$
E\left(J_{t} J_{t}^{T}\right)=\underbrace{H E\left(X_{t}-\hat{X}_{t}\right)\left(X_{t}-\hat{X}\right)^{T}}_{\Omega_{t}} H^{T}+\underbrace{E U_{t} U_{t}^{T}}_{\Sigma_{U}},
$$

and

$$
\mathrm{E}\left(\mathrm{X}_{\mathrm{t}+1} \mathrm{~J}_{\mathrm{t}}^{\mathrm{T}}\right)=\mathrm{E}\left(\mathrm{FX}_{\mathrm{t}}+\mathrm{V}_{\mathrm{t}}\right)\left(\left(\mathrm{X}_{\mathrm{t}}-\hat{X}_{\mathrm{t}}\right)^{\mathrm{T}} \mathrm{H}^{\mathrm{T}}+\mathrm{U}_{\mathrm{t}}^{\mathrm{T}}\right)=\mathrm{F} \Omega_{\mathrm{t}} \mathrm{H}^{\mathrm{T}}
$$

we obtain

$$
\begin{aligned}
\hat{X}_{t+1} & =\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{Y}_{\mathrm{t}}, \ldots, \mathrm{Y}_{1}\right) \\
& =\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{J}_{\mathrm{t}}\right)+\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{Y}_{\mathrm{t}-1}, \ldots, \mathrm{Y}_{1}\right) \\
& =\mathrm{E}\left(\mathrm{X}_{\mathrm{t}+1} \mathrm{~J}_{\mathrm{t}}^{\mathrm{T}}\right)\left(\mathrm{E}\left(\mathrm{~J}_{\mathrm{t}} \mathrm{~J}_{\mathrm{t}}^{\mathrm{T}}\right)\right)^{-1} \mathrm{~J}_{\mathrm{t}}+\mathrm{P}_{\mathrm{t}-1}\left(\mathrm{FX}_{\mathrm{t}}+\mathrm{V}_{\mathrm{t}}\right) \\
& =\underbrace{\mathrm{F} \Omega_{\mathrm{t}} \mathrm{H}^{\mathrm{T}}\left(\mathrm{H} \Omega_{\mathrm{t}}^{\mathrm{T}} \mathrm{H}^{\mathrm{T}}+\Sigma_{\mathrm{U}}\right)^{-1} \mathrm{~J}_{\mathrm{t}}+\mathrm{F} \hat{X}_{\mathrm{t}} .}_{\mathrm{G}\left(\Omega_{\mathrm{t}}\right)} .
\end{aligned}
$$

The covariance matrices

$$
\Omega_{t}=\mathrm{E}\left(\mathrm{X}_{\mathrm{t}}-\hat{\mathrm{X}}_{\mathrm{t}}\right)\left(\mathrm{X}_{\mathrm{t}}-\hat{X}_{\mathrm{t}}\right)^{\mathrm{T}}
$$

can also be obtained recursively, because $\Omega_{\mathrm{t}+1}$ can be written as

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{X}_{\mathrm{t}+1} \mathrm{X}_{\mathrm{t}+1}^{\mathrm{T}}\right)-\mathrm{E}\left(\hat{X}_{\mathrm{t}+1} \hat{X}_{\mathrm{t}+1}^{\mathrm{T}}\right) \\
= & \mathrm{E}\left(\mathrm{FX}_{\mathrm{t}}+\mathrm{V}_{\mathrm{t}}\right)\left(\mathrm{FX} \mathrm{~V}_{\mathrm{t}}+\mathrm{V}_{\mathrm{t}}^{\mathrm{T}}-\mathrm{E}\left(\mathrm{G}\left(\Omega_{\mathrm{t}}\right) \mathrm{J}_{\mathrm{t}}+\mathrm{F} \hat{X}_{\mathrm{t}}\right)\left(\mathrm{G}\left(\Omega_{\mathrm{t}}\right) \mathrm{J}_{\mathrm{t}}+\mathrm{F} \hat{X}_{\mathrm{t}}\right)^{\mathrm{T}}\right. \\
= & \mathrm{F}\left(\mathrm{E}\left(\mathrm{X}_{\mathrm{t}} \mathrm{X}_{\mathrm{t}}^{\mathrm{T}}\right)-\mathrm{E}\left(\hat{X}_{\mathrm{t}} \hat{X}_{\mathrm{t}}^{\mathrm{T}}\right) \mathrm{F}^{\mathrm{T}}+\mathrm{E} V_{\mathrm{t}}^{\mathrm{T}}-\mathrm{G}\left(\Omega_{\mathrm{t}} \mathrm{E}\left(\mathrm{~J}_{\mathrm{t}}^{\mathrm{T}}\right)^{\mathrm{T}}\left(\Omega_{\mathrm{t}}\right)\right.\right. \\
= & \mathrm{F} \Omega_{\mathrm{t}}^{\mathrm{T}} \mathrm{~T}^{\mathrm{T}} \Sigma_{\mathrm{V}}-\mathrm{F} \Omega_{\mathrm{t}} \mathrm{H}^{\mathrm{T}}\left(\mathrm{H} \Omega_{\mathrm{t}}^{\mathrm{T}} \mathrm{~T}_{\mathrm{T}}^{-1}\left(\mathrm{H} \Omega_{\mathrm{t}}^{\mathrm{T}} \mathrm{H}^{\mathrm{T}}+\Sigma_{\mathrm{U}}\right) \mathrm{G}^{\mathrm{T}}\left(\Omega_{\mathrm{t}}\right)\right. \\
= & =\mathrm{F} \Omega_{\mathrm{t}} \mathrm{~T}^{\mathrm{T}}+\Sigma_{\mathrm{V}}-\mathrm{F} \Omega_{\mathrm{t}} \mathrm{H}^{\mathrm{T}}\left(\mathrm{H} \Omega_{\mathrm{t}} \mathrm{H}^{\mathrm{T}}+\Sigma_{\mathrm{U}}\right)^{-1}\left(\mathrm{~F} \Omega_{\mathrm{t}} \mathrm{H}^{\mathrm{T}}\right)^{\mathrm{T}} .
\end{aligned}
$$

Exercise: Suppose that the inverse of $\mathrm{E}\left(\mathrm{J}_{\mathrm{t}} \mathrm{J}_{\mathrm{t}}^{\mathrm{T}}\right)$ exists. Show that

$$
\mathrm{E}\left(\mathrm{X}_{\mathrm{t}+1}-\mathrm{MJ}_{\mathrm{t}}\right) \mathrm{J}_{\mathrm{t}}^{\mathrm{T}}=0
$$

implies that

$$
\mathrm{M}=\mathrm{E}\left(\mathrm{X}_{\mathrm{t}+1} \mathbf{J}_{\mathrm{t}}^{\mathrm{T}}\right)\left(\mathrm{E}\left(\mathrm{~J}_{\mathrm{t}} \mathbf{J}_{\mathrm{t}}^{\mathrm{T}}\right)\right)^{-1} .
$$

Assuming that all variables are jointly normally distributed, we can write the joint density of the mdimensional observations $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}$ (conditional on Y_{0}) as

$$
\begin{aligned}
f\left(Y_{1}, \ldots, Y_{n} \mid Y_{0}\right) & =\prod_{t=1}^{n} f\left(Y_{t} \mid Y_{t-1}, \ldots, Y_{0}\right) \\
& =\prod_{t=1}^{n}(2 \pi)^{-\frac{m}{2}}\left(\operatorname{det} \Sigma_{t}\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} J_{t}^{T} \Sigma_{t}^{-1} J_{t}\right),
\end{aligned}
$$

where

$$
J_{t}=Y_{t}-P_{t-1}\left(Y_{t}\right)=Y_{t}-H \hat{X}_{t}
$$

and

$$
\Sigma_{\mathrm{t}}=\mathrm{E}\left(\mathrm{Y}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\left(\mathrm{Y}_{\mathrm{t}}\right)\right)\left(\mathrm{Y}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}\left(\mathrm{Y}_{\mathrm{t}}\right)\right)^{\mathrm{T}}=\mathrm{E}\left(\mathrm{~J}_{\mathrm{t}} \mathrm{~J}_{\mathrm{t}}^{\mathrm{T}}\right)=\mathrm{H} \Omega_{\mathrm{t}} \mathrm{H}^{\mathrm{T}}+\Sigma_{\mathrm{U}} .
$$

For given parameter matrices $\mathrm{H}, \mathrm{F}, \Sigma_{\mathrm{U}}, \Sigma_{\mathrm{V}}$, the joint density can be evaluated with the Kalman recursions. To find the parameter matrices that maximize the joint density (maximum likelihood estimates) we must use some nonlinear optimization algorithm.

State-space representations of ARMA models

A univariate $A R(p)$ process represented by

$$
y_{t}=\phi_{1} y_{t-1}+\ldots+\phi_{p} y_{t-p}+u_{t}
$$

can be written in state-space form as

$$
\begin{gathered}
\mathrm{y}_{\mathrm{t}}=(0,0, \ldots, 0,1) \mathrm{X}_{\mathrm{t}}, \\
\mathrm{X}_{\mathrm{t}+1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
\phi_{\mathrm{p}} & \phi_{\mathrm{p}-1} & \phi_{\mathrm{p}-2} & \cdots & \phi_{1}
\end{array}\right) \mathrm{X}_{\mathrm{t}}+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) \mathrm{u}_{\mathrm{t}+1},
\end{gathered}
$$

where

$$
X_{t}=\left(y_{t-p+1}, y_{t-p+2}, \ldots, y_{t-1}, y_{t}\right)^{T} .
$$

State-space representations are not unique. For example, the MA(1) process

$$
y_{t}=\theta_{1} u_{t-1}+u_{t}
$$

can be written as

$$
\begin{gathered}
\mathrm{y}_{\mathrm{t}}=\left(1, \theta_{1}\right) \mathrm{X}_{\mathrm{t}}, \\
\mathrm{X}_{\mathrm{t}+1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \mathrm{X}_{\mathrm{t}}+\binom{1}{0} \mathrm{u}_{\mathrm{t}+1},
\end{gathered}
$$

where

$$
X_{t}=\binom{u_{t}}{u_{t-1}}
$$

and also as

$$
\begin{gathered}
y_{\mathrm{t}}=(1,0) \mathrm{X}_{\mathrm{t}}, \\
\mathrm{X}_{\mathrm{t}+1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \mathrm{X}_{\mathrm{t}}+\binom{1}{\theta_{1}} \mathrm{u}_{\mathrm{t}+1},
\end{gathered}
$$

where

$$
\mathrm{X}_{\mathrm{t}}=\binom{\mathrm{u}_{\mathrm{t}}+\theta_{1} \mathrm{u}_{\mathrm{t}-1}}{\theta_{1} \mathrm{u}_{\mathrm{t}}} .
$$

