STATE-SPACE MODELS

AND

THE KALMAN RECURSIONS



State-space models

Replacing the deterministic trend component
my=atbt
in the linear trend model
Y=m+U, t=1,2,3,...

by a cumulative sum of i.i.d. random variables (random
walk)
Mt:V]_+. ..t Vt,

we obtain the stochastic trend model
Y=M+U, t=1,2,3,...,
which can be represented in state-space form as
Y=M+U, t=1,2,3,...,
M=M1+V,, t=1,2,3,... .

A state-space model consists of two eguations. The
observation equation (or measur ement eguation)
expresses the observation Y as alinear function of the
state M, plus noise. The state equation (or transition
equation) expresses the state M; as alinear function of
the previous state M+.; plus noise.

All noise terms in the two equations are taken to be
uncorrelated with each other and also with the initial state
Mo.



Replacing the deterministic trend component
my=atbt
in the linear trend model
Y=m+U, t=1,2,3,...
first by arandom walk with drift
M=(b+V)+...+(b+V))

and then the deterministic drift term b by another random
walk
Bt:W1+ . +Wt,

we obtain thelocal linear trend model, which can be
written as
Yt:Mt+Ut, t:1,2,3, ceey

Mt: Mt_1+Bt+Vt, t:1,2,3, Caey
Bt:Bt_1+Wt, t:1,2,3, ey

or in state-space form with a 2-dimensional state vector
as

M
Y=(1 o)( ij+ut, t=1,2,3,...,

t

M) (1 D\ (M) (VY
NE P+ U] t=1,23,
B, ) 0 1B, ) \W,

where B;=B.; and W, =W_.



The Kalman recursions

Consider the state-space model
Y =HX+U;, Xete1=FX+V;
for the possibly multivariate observations Y 4,...,Y .

Assuming that all covariance matrices are finite and
choosing Yo=(1,...,1)", we define the one-step predictor

X =Pea(X)=P(X¢| Yia,.-.,Y )

of X;intermsof Y4,...,Y o asthe (componentwise)
projection of X; onto the closed subspace spanned by the
components of Yi.4,...,Yo.

Using
J[ :Yt'Pt_]_(Yt):H Xt+Ut'Pt_1(H Xt+Ut):H(Xt'>A(t)+Ut,

E(JJI))=HE(X, =X )(X, =X)TH™+EU, U] ,
Q, 2y
and

E(Xpadf )=E(FXAV (XX ) THT+U{)=FQH"

we obtain
X 1 =PXes1| Yoo, Y1)
=P(X1| D)+PKes1| Yi,...,Y 1)
=E(X 1 Jf J(ERJ] ) IPea(FX V)
=FQHT(HQH" +3 )" I+FX,.

G(Qy)




The covariance matrices
QEEX-X ) (XX )"

can also be obtained recursively, because Q., can be
written as

E(Xt+1x:[r+1)'E(>A(t+1>A(I+l R R
=E(FX eV (FX V) T-E(G(Q)IHFX ) (G(Q)I+FX,)T
=F(E(X:X{)-E(X, XT)F+EV:V{ -G(Q)E(AJ])GT(Q)
=FQF +Z,-FQHT(HQHT+Z,) AHQH+2,)GT(Q)
=FQF +5y-FQHT(HQH+50) {(FQHT)".

Exercise: Suppose that the inverse of E(JJ! ) exists.
Show that

E(Xw1-MJ)J; =0
Implies that
M=E(Xe13¢ )(EXI)) ™



Estimation of state-space models

Assuming that al variables are jointly normally
distributed, we can write the joint density of the m-
dimensional observationsY,...,Y, (conditional onY) as

f(Y1,,Yal Yo) =[1F (Y, | Yea,., Yo)
t=1

—|-|(2n) 2(dets, ) exp( 137s43,),

where

J=Y -Pa(Y)=YHX,
and

> =E(Y -Pa(Y)) (Y -Pea(Y)) '=E(3J] )=HQH "+,

For given parameter matricesH, F, 2, 2y, thejoint
density can be evaluated with the Kalman recursions.
To find the parameter matrices that maximize the joint
density (maximum likelihood estimates) we must use
some nonlinear optimization algorithm.



State-space r epr esentations of ARMA modéls

A univariate AR(p) process represented by

Yi=QiYrat... +@YiptU
can be written in state-space form as
yt:(0,0, e ,O,l)Xt,

0 1 0 -- 0) (0

O O 1 --- O 0)
Xis1=| : D X Y U,

O O o ... 1 0)

Q¢ Qg1 P2 - @ 1

where

Xi=Yip+1,Ye-pt2s- - 1yt—11yt)T-



State-space representations are not unique. For example,
the MA(1) process

Yi=01U¢ 1+ Uy
can be written as
yi=(1,01) X4,

where
o
Xt: y
ut—l
and also as
yt:(lao)xh
X .= 0 1 .t 1 J
t+1— O O t el t+1y
where



