HILBERT SPACE GEOMETRY

Definition: A vector space over \mathbb{R} is a set V (whose elements are called vectors) together with a binary operation

$$
+: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{~V}
$$

which is called vector addition, and an external binary operation

$$
:: \mathbb{R} \times \mathrm{V} \rightarrow \mathrm{~V},
$$

which is called scalar multiplication, such that
(i) $(\mathrm{V},+$) is a commutative group
(whose neutral element is called zero vector)
and (ii) for all $\lambda, \mu \in \mathbb{R}, x, y \in V: \lambda(\mu x)=(\lambda \mu) x$,

$$
\begin{aligned}
& 1 x=x, \\
& \lambda(x+y)=(\lambda x)+(\lambda y), \\
& (\lambda+\mu) x=(\lambda x)+(\mu x),
\end{aligned}
$$

where the image of $(\mathrm{x}, \mathrm{y}) \in \mathrm{V} \times \mathrm{V}$ under + is written as $\mathrm{x}+\mathrm{y}$ and the image of $(\lambda, x) \in \mathbb{R} \times V$ under \cdot is written as λx or as $\lambda \cdot x$.

Exercise: Show that the set \mathbb{R}^{2} together with vector addition and scalar multiplication defined by
and

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}+\binom{\mathrm{y}_{1}}{\mathrm{y}_{2}}=\binom{\mathrm{x}_{1}+\mathrm{y}_{1}}{\mathrm{x}_{2}+\mathrm{y}_{2}} \\
\lambda\binom{\mathrm{x}_{1}}{\mathrm{x}_{2}}=\binom{\lambda \mathrm{x}_{1}}{\lambda \mathrm{x}_{2}},
\end{gathered}
$$

respectively, is a vector space.

Remark: Usually we do not distinguish strictly between a vector space ($\mathrm{V},+$,) and the set of its vectors V. For example, in the next definition V will first denote the vector space and then the set of its vectors.

Definition: If V is a vector space and $\mathrm{M} \subseteq \mathrm{V}$, then the set of all linear combinations of elements of M is called linear hull or linear span of M. It is denoted by span(M). By convention, $\operatorname{span}(\varnothing)=\{0\}$.

Proposition: If V is a vector space, then the linear hull of any subset M of V (together with the restriction of the vector addition to $\mathrm{M} \times \mathrm{M}$ and the restriction of the scalar multiplication to $\mathbb{R} \times \mathrm{M})$ is also a vector space.
Proof: We only need to prove that span(M) contains the zero vector and that it is closed under vector addition and scalar multiplication:

$$
\begin{aligned}
& M=\varnothing \Rightarrow \operatorname{span}(M)=\{0\} \Rightarrow 0 \in \operatorname{span}(M) \\
& M \neq \varnothing \Rightarrow \exists x \in M: 0 \cdot x=0 \in \operatorname{span}(M) \\
& x, y \in \operatorname{span}(M) \Rightarrow x+y=1 \cdot x+1 \cdot y \in \operatorname{span}(M) \\
& x \in \operatorname{span}(M), \lambda \in \mathbb{R} \Rightarrow \lambda \cdot x \in \operatorname{span}(M)
\end{aligned}
$$

The other properties of a vector space are satisfied for all elements of V and therefore also for all elements of $\mathrm{M} \subseteq \mathrm{V}$.

Definition: If a subset M of a vector space V is also a vector space, it is called a linear subspace of V .

Definition: An inner product space is a vector space V together with a function

$$
\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}
$$

(called inner product) satisfying the following axioms:
For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{V}, \lambda \in \mathbb{R}$

$$
\begin{aligned}
& \text { (i) }\langle x, y\rangle=\langle y, x\rangle, \\
& \text { (ii) }\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle \text {, } \\
& \text { (iii) }\langle\lambda x, y\rangle=\lambda\langle x, y\rangle, \\
& \text { (iv) }\langle x, x\rangle \geq 0, \\
& \text { (v) }\langle x, x\rangle=0 \Leftrightarrow x=0 .
\end{aligned}
$$

A semi-inner product satisfies (i) - (iv), but $\langle x, x\rangle$ can be zero if $x \neq 0$.

Exercise: Show that the inner product axioms (i)-(iii) imply that for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u} \in \mathrm{V}, \lambda, \mu, \nu, \xi \in \mathbb{R}$

$$
\langle\lambda \mathrm{x}+\mu \mathrm{y}, v \mathrm{z}+\xi \mathrm{u}\rangle=\lambda v\langle\mathrm{x}, \mathrm{z}\rangle+\lambda \xi\langle\mathrm{x}, \mathrm{u}\rangle+\mu v\langle\mathrm{y}, \mathrm{z}\rangle+\mu \xi\langle\mathrm{y}, \mathrm{u}\rangle .
$$

Exercise: Show that the vector space \mathbb{R}^{2} together with the function \rangle defined by

$$
\left\langle\binom{ x_{1}}{x_{2}},\binom{y_{1}}{y_{2}}\right\rangle=x_{1} y_{1}+x_{2} y_{2}
$$

is an inner product space.

Definition: The norm (seminorm) of an element x of an inner product space (semi-inner product space) is defined by

$$
\|\mathrm{x}\|=\sqrt{\langle\mathrm{x}, \mathrm{x}\rangle} .
$$

Cauchy-Schwarz Inequality: If x and y are elements of an inner product space, then

$$
|\langle x, y\rangle| \leq\|x\| y \| .
$$

Proof: $0 \leq\langle\|y\| x \pm\|x\| y,\|y\| x \pm\|x\| y\rangle$

$$
\begin{aligned}
& =\|y\|^{2}\langle x, x\rangle \pm 2\|x\| y\|\langle x, y\rangle+\| x \|^{2}\langle y, y\rangle \\
& =2\|x\|^{2}\|y\|^{2} \pm 2\|x\| y \|\langle x, y\rangle \\
& =2\|x\| y\| \|\|x\| y \| \pm\langle x, y\rangle) \\
\Rightarrow & 0
\end{aligned}
$$

Exercise: Let V be a semi-inner product space.
Show that for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{V}, \lambda \in \mathbb{R}$
(i) $\|x+y\| \leq\|x\|+\|y\|$,
(ii) $\|\lambda x\|=\mid \lambda\|x\|$,
(iii) $\|\mathrm{x}\| \geq 0$,
and, if V is an inner product space, also

$$
\text { (iv) }\|x\|=0 \Leftrightarrow x=0
$$

Lemma: The triangle inequality $\|x+y\| \leq\|x\|+\|y\|$ implies that for all x and y

$$
\|\mathrm{x}-\mathrm{y}\| \geq\|\mathrm{x}\|-\|\mathrm{y}\| .
$$

Proof: $\quad\|x\|=\|(x-y)+y\| \leq\|x-y\|+\|y\| \Rightarrow\|x-y\| \geq\|x\|-\| y \mid$

$$
\|y\|=\|(y-x)+x\| \leq\|y-x\|+\|x\| \Rightarrow\|y-x\| \geq\|y\|-\|x\|
$$

Continuity of the Norm: If the sequence (x_{n}) of elements of an inner product space V converges in norm to $x \in V$, then the sequence $\left\|x_{n}\right\|$ converges to $\|x\|$, i.e.,.

$$
\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\| \rightarrow 0 \Rightarrow\left\|\mathrm{x}_{\mathrm{n}}\right\| \rightarrow\|\mathrm{x}\| .
$$

Proof: $0 \leq\left|\left\|x_{n}\right\|-\|x\|\right| \leq\left\|x_{n}-x\right\| \rightarrow 0$

Continuity of the Inner Product: If the sequences (x_{n}) and

 $\left(y_{n}\right)$ of elements of an inner product space V converge in norm to $\mathrm{x} \in \mathrm{V}$ and $\mathrm{y} \in \mathrm{V}$, respectively, then the sequence $\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right\rangle$ converges to $\langle\mathrm{x}, \mathrm{y}\rangle$, i.e.,$$
\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\| \rightarrow 0,\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{y}\right\| \rightarrow 0 \Rightarrow\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right\rangle \rightarrow\langle\mathrm{x}, \mathrm{y}\rangle .
$$

Proof: $0 \leq\left\langle\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right|=\left\langle x_{n}, y_{n}-y\right\rangle+\left\langle x_{n}-x, y\right\rangle \mid$

$$
\begin{gathered}
\leq\left|\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}-\mathrm{y}\right\rangle\right|+\left|\left\langle\mathrm{x}_{\mathrm{n}}-\mathrm{x}, \mathrm{y}\right\rangle\right| \\
\leq\left\|\mathrm{x}_{\mathrm{n}}\right\|\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{y}\right\|+\left\|+\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\|\|\mathrm{y}\| \\
\quad \downarrow \\
\|\mathrm{x}\| \\
\downarrow
\end{gathered}
$$

Definition: An inner product space H is called a Hilbert space, if it is complete in the sense that every Cauchy sequence (x_{n}) of elements of H converges to some element $x \in H$, i.e.,

$$
\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}} \in \mathrm{H},\left\|\mathrm{x}_{\mathrm{m}}-\mathrm{x}_{\mathrm{n}}\right\| \rightarrow 0 \text { as } \mathrm{m}, \mathrm{n} \rightarrow \infty \Rightarrow \exists \mathrm{x} \in \mathrm{H}:\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\| \rightarrow 0
$$

Example: That the inner product space \mathbb{R}^{2} is a Hilbert space can be seen as follows.

$$
\begin{aligned}
& \left\|\binom{\mathrm{x}_{\mathrm{m} 1}}{\mathrm{x}_{\mathrm{m} 2}}-\binom{\mathrm{x}_{\mathrm{n} 1}}{\mathrm{x}_{\mathrm{n} 2}}\right\|^{2}=\left(\mathrm{x}_{\mathrm{m} 1}-\mathrm{x}_{\mathrm{n} 1}\right)^{2}+\left(\mathrm{x}_{\mathrm{m} 2}-\mathrm{x}_{\mathrm{n} 2}\right)^{2} \rightarrow 0 \\
\Rightarrow & \left(\mathrm{x}_{\mathrm{m} 1}-\mathrm{x}_{\mathrm{n} 1}\right)^{2} \rightarrow 0,\left(\mathrm{x}_{\mathrm{m} 2}-\mathrm{x}_{\mathrm{n} 2}\right)^{2} \rightarrow 0 \\
\Rightarrow & \exists \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{R}: \mathrm{x}_{\mathrm{n} 1} \rightarrow \mathrm{x}_{1}, \mathrm{x}_{\mathrm{n} 2} \rightarrow \mathrm{x}_{2} \quad(\text { by the completeness of } \mathbb{R}) \\
\Rightarrow & \left\|\binom{\mathrm{x}_{\mathrm{n} 1}}{\mathrm{x}_{\mathrm{n} 2}}-\binom{\mathrm{x}_{1}}{\mathrm{x}_{2}}\right\|^{2}=\left(\mathrm{x}_{\mathrm{n} 1}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{x}_{\mathrm{n} 2}-\mathrm{x}_{2}\right)^{2} \rightarrow 0
\end{aligned}
$$

Definition: A linear subspace S of a Hilbert space is said to be a closed subspace, if

$$
\mathrm{x}_{\mathrm{n}} \in \mathrm{~S},\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\| \rightarrow 0 \Rightarrow \mathrm{x} \in \mathrm{~S}
$$

Exercise: Show that the intersection $\bigcap_{i \in I} S_{i}$ of a family of closed subspaces of a Hilbert space is also a closed subspace.

Definition: The closed span of a subset M of a Hilbert space is defined as the intersection of all closed subspaces which contain all elements of M . It is denoted by span (M).

Definition: Two elements x and y of an inner product space are said to be orthogonal $(x \perp y)$, if $\langle x, y\rangle=0$.

Proposition: The orthogonal complement

$$
\mathrm{M}^{\perp}=\{\mathrm{x} \in \mathrm{H}: \mathrm{x} \perp \mathrm{y} \forall \mathrm{y} \in \mathrm{M}\}
$$

of any subset M of a Hilbert space H is a closed subspace.
Proof: M^{\perp} is a linear subspace, because

$$
\begin{aligned}
& \mathrm{z} \in \mathrm{M} \Rightarrow\langle 0, \mathrm{z}\rangle=0 \Rightarrow 0 \perp \mathrm{z} \\
& \mathrm{x}, \mathrm{y} \in \mathrm{M}^{\perp}, \mathrm{z} \in \mathrm{M} \Rightarrow\langle\mathrm{x}+\mu, \mathrm{z}\rangle=\langle\mathrm{x}, \mathrm{z}\rangle+\langle\mathrm{y}, \mathrm{z}\rangle=0 \Rightarrow \mathrm{x}+\mathrm{y} \perp \mathrm{z} \\
& \mathrm{x} \in \mathrm{M}^{\perp}, \lambda \in \mathbb{R}, \mathrm{z} \in \mathrm{M} \Rightarrow\langle\lambda \mathrm{x}, \mathrm{z}\rangle=\lambda\langle\mathrm{x}, \mathrm{z}\rangle=0 \Rightarrow \lambda \mathrm{x} \perp \mathrm{z} .
\end{aligned}
$$

Moreover, M^{\perp} is even a closed subspace, because

$$
\begin{aligned}
\mathrm{x}_{\mathrm{n}} \in \mathrm{M}^{\perp},\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\| \rightarrow 0, \mathrm{z} \in \mathrm{M} & \Rightarrow\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right\rangle=0 \text { for all } \mathrm{n} \\
& \Rightarrow\langle\mathrm{x}, \mathrm{z}\rangle=\lim \left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right\rangle=0 .
\end{aligned}
$$

Projection Theorem: If S is a closed subspace of a Hilbert space H, then each $x \in H$ can be uniquely represented as

$$
\mathrm{x}=\hat{\mathrm{x}}+\mathrm{u},
$$

where $\hat{x} \in S$ and $u \in S^{\perp}$. Furthermore, \hat{x} (which is called the projection of x onto S) satisfies

$$
\|x-\hat{x}\|<\|x-y\|
$$

for any other element $y \in S$.
Definition: Let S be a closed subspace of a Hilbert space H. The mapping

$$
P_{S}(x)=\hat{x}, x \in H,
$$

where \hat{x} is the projection of x onto S, is called the projection mapping of H onto S .

Properties of Projection Mappings: If $\mathrm{S}, \mathrm{S}_{1}, \mathrm{~S}_{2}$ are closed subspaces of a Hilbert space $H, x, y, x_{n} \in H$, and $\lambda, \mu \in \mathbb{R}$, then:
(i) $\mathrm{P}_{\mathrm{S}}(\lambda \mathrm{x}+\mu \mathrm{y})=\lambda \mathrm{P}_{\mathrm{S}}(\mathrm{x})+\mu \mathrm{P}_{\mathrm{S}}(\mathrm{y})$
(ii) $\mathrm{x} \in \mathrm{S} \Leftrightarrow \mathrm{P}_{\mathrm{S}}(\mathrm{x})=\mathrm{x}$
(iii) $x \in S^{\perp} \Leftrightarrow P_{S}(x)=0$
(iv) $x=P_{S}(x)+P_{S^{\perp}}(x)$
(v) $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \Leftrightarrow \mathrm{P}_{\mathrm{S}_{1}}\left(\mathrm{P}_{\mathrm{S}_{2}}(\mathrm{x})\right)=\mathrm{P}_{\mathrm{S}_{1}}(\mathrm{x})$
(vi) $\left\|x_{n}-x\right\| \rightarrow 0 \Rightarrow\left\|P_{S}\left(x_{n}\right)-P_{S}(x)\right\| \rightarrow 0$

Proposition: If $\mathrm{M}=\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ is a set of mutually orthogonal elements of a Hilbert space H and $0 \notin \mathrm{M}$, then

$$
\mathrm{P}_{\text {span }(\mathrm{M})}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}=1} \frac{\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right\rangle}{\left\|\mathrm{u}_{\mathrm{k}}\right\|^{2}} \mathrm{u}_{\mathrm{k}} \forall \mathrm{x} \in \mathrm{H} .
$$

Proof: For each $u_{j} \in M$ we have

$$
\begin{aligned}
\left\langle\mathrm{x}-\sum_{\mathrm{k}=1}^{\mathrm{n}=1} \frac{\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right\rangle}{\left\|\mathrm{u}_{\mathrm{k}}\right\|^{2}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{j}}\right\rangle= & \left\langle\mathrm{x}, \mathrm{u}_{\mathrm{j}}\right\rangle-\sum_{\mathrm{k}=1}^{\mathrm{n}=1} \frac{\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right\rangle}{\left\|\mathrm{u}_{\mathrm{k}}\right\|^{2}}\left\langle\mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{j}}\right\rangle \\
& =\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{j}}\right\rangle-\frac{\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{i}}\right\rangle}{\left\|\mathrm{u}_{\mathrm{i}}\right\|^{2}}\left\langle\mathrm{u}_{\mathrm{j}}, \mathrm{u}_{\mathrm{j}}\right\rangle \\
& =0 .
\end{aligned}
$$

Thus

$$
\left\langle\mathrm{x}-\sum_{\mathrm{k}=1}^{\mathrm{n}=1} \frac{\left\langle\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right\rangle}{\left\|\mathrm{u}_{\mathrm{k}}\right\|^{2}} \mathrm{u}_{\mathrm{k}}, \sum_{\mathrm{k}=1}^{\mathrm{n}} \lambda_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}\right\rangle=0
$$

for each linear combination $\sum_{\mathrm{k}=1}^{\mathrm{n}} \lambda_{\mathrm{k}} \mathrm{u}_{\mathrm{k}} \in \operatorname{span}(\mathrm{M})=\overline{\operatorname{span}}(\mathrm{M})$.

