
 

 

 

HILBERT SPACE GEOMETRY 
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Definition: A vector space over  is a set V (whose 
elements are called vectors) together with a binary operation  

 

+:V×V→V, 

which is called vector addition, and an external binary 
operation  

⋅: ×V→V, 

which is called scalar multiplication, such that 

        (i)   (V,+) is a commutative group  
              (whose neutral element is called zero vector)    
 

and  (ii)  for all λ,µ∈ , x,y∈ V: λ(µx)=(λµ)x, 
                        1 x=x, 
                                    λ(x+y)=(λx)+(λy), 
                                   (λ+µ)x=(λx)+(µx), 

where the image of (x,y)∈ V×V under + is written as x+y and 
the image of (λ,x)∈ ×V under ⋅ is written as λx or as λ⋅x. 
 
Exercise: Show that the set 2 together with vector addition 
and scalar multiplication defined by 
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respectively, is a vector space. 
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Remark: Usually we do not distinguish strictly between a 
vector space (V,+,⋅) and the set of its vectors V. For 
example, in the next definition V will first denote the vector 
space and then the set of its vectors.     
 
Definition: If V is a vector space and M⊆ V, then the set of 
all linear combinations of elements of M is called linear hull 
or linear span of M. It is denoted by span(M). By 
convention, span(∅ )={0}.  
 
Proposition: If V is a vector space, then the linear hull of 
any subset M of V (together with the restriction of the vector 
addition to M×M and the restriction of the scalar 
multiplication to ×M) is also a vector space. 
 

Proof: We only need to prove that span(M) contains the zero 
vector and that it is closed under vector addition and scalar 
multiplication:  
 

M=∅  ⇒ span(M)={0} ⇒ 0∈ span(M) 
M≠∅  ⇒ ∃ x∈ M: 0⋅x=0∈ span(M) 

x,y∈ span(M) ⇒ x+y=1⋅x+1⋅y∈ span(M) 
x∈ span(M), λ∈  ⇒ λ⋅x∈ span(M) 

 

The other properties of a vector space are satisfied for all 
elements of V and therefore also for all elements of M⊆ V. 
  
Definition: If a subset M of a vector space V is also a vector 
space, it is called a linear subspace of V. 
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Definition: An inner product space is a vector space V 
together with a function 
  

:V×V→  

(called inner product) satisfying the following axioms: 
     

For all x,y,z∈ V, λ∈   
(i)   y,x = x,y , 
(ii)  z,yx + = z,x + z,y , 

(iii)  y,xλ =λ y,x , 

(iv)  x,x ≥ 0, 

(v)  x,x =0 ⇔ x=0. 

A semi-inner product satisfies (i) – (iv), but x,x  can be 

zero if x≠0.  
 
Exercise: Show that the inner product axioms (i)-(iii) imply 
that for all x,y,z,u∈ V, λ,µ,ν,ξ∈   
 

uz,yx ξ+νµ+λ =λν z,x +λξ u,x +µν z,y +µξ u,y . 
 
Exercise: Show that the vector space 2 together with the 
function  defined by 
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is an inner product space. 
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Definition: The norm (seminorm) of an element x of an 
inner product space (semi-inner product space) is defined by 
 

x = x,x . 

Cauchy-Schwarz Inequality: If x and y are elements of an 
inner product space, then   
 

y,x ≤ x y . 

Proof:   0≤ yxxy,yxxy ±±   

        = 2y x,x ±2 x y y,x + 2x y,y  

        = 2 2x 2y ±2 x y y,x  

        = 2 x y ( x y ± y,x ) 

         ⇒  0≤ x y ± y,x  ⇒ ± y,x ≤ x y  

Exercise: Let V be a semi-inner product space.  
Show that for all x,y,z∈ V, λ∈

(i)   yx + ≤ x + y , 
            (ii)  xλ = λ x , 

               (iii)  x ≥0, 

and, if V is an inner product space, also 

(iv)  x =0 ⇔ x=0. 
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Lemma: The triangle inequality yx + ≤ x + y  implies that 
for all x and y 

yx − ≥ yx − . 

Proof:    x = y)yx( +− ≤ yx − + y  ⇒ yx − ≥ x - y  

       y = x)xy( +− ≤ xy − + x  ⇒ xy − ≥ y - x  

Continuity of the Norm: If the sequence (xn) of elements of 
an inner product space V converges in norm to x∈ V,  then 
the sequence nx  converges to x , i.e.,. 
 

xxn − →0 ⇒ nx → x . 

Proof:   0≤ xxn − ≤ xxn − →0 

Continuity of the Inner Product: If the sequences (xn) and 
(yn) of elements of an inner product space V converge in 
norm to x∈ V and y∈ V, respectively, then the sequence 

nn y,x  converges to y,x , i.e., 
 

xxn − →0, yyn − →0 ⇒ nn y,x → y,x . 

Proof:   0≤ y,xy,x nn − = y,xxyy,x nnn −+−  

                     ≤ yy,x nn − + y,xxn −  

                     ≤ nx yyn − + xxn − y  

                                               ↓         ↓             ↓       
                                              x        0             0     



 6 

 
Definition: An inner product space H is called a Hilbert 
space, if it is complete in the sense that every Cauchy 
sequence (xn) of elements of H converges to some element 
x∈ H, i.e., 
  

xn,xm∈ H, nm xx − →0 as m,n→∞ ⇒ ∃ x∈ H: xxn − →0. 

Example: That the inner product space 2 is a Hilbert space 
can be seen as follows.   
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Definition: A linear subspace S of a Hilbert space is said to 
be a closed subspace, if   
 

xn∈ S, xxn − →0 ⇒ x∈ S. 
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Exercise: Show that the intersection I Ii iS∈  of a family of 
closed subspaces of a Hilbert space is also a closed subspace. 
 
Definition: The closed span of a subset M of a Hilbert space 
is defined as the intersection of all closed subspaces which 
contain all elements of M. It is denoted by span(M). 
 
Definition: Two elements x and y of an inner product space 
are said to be orthogonal (x⊥ y), if y,x =0. 
 
Proposition: The orthogonal complement  

M⊥ ={x∈ H: x⊥ y ∀ y∈ M} 

of any subset M of a Hilbert space H is a closed subspace. 
 

Proof: M⊥  is a linear subspace, because  
 

z∈ M ⇒ z,0 =0 ⇒ 0⊥ z, 

x,y∈ M⊥ , z∈ M ⇒ z,x µ+ = z,x + z,y =0 ⇒ x+y⊥ z, 

x∈ M⊥ , λ∈ , z∈ M ⇒ z,xλ =λ z,x =0 ⇒ λx⊥ z. 
 

Moreover, M⊥  is even a closed subspace, because  
  

xn∈ M⊥ , xxn − →0, z∈ M ⇒ z,xn =0 for all n 

                                               ⇒ z,x =lim z,xn =0. 
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Projection Theorem: If S is a closed subspace of a Hilbert 
space H, then each x∈ H can be uniquely represented as   

 

x=x̂ +u, 

where x̂ ∈ S and u∈ S⊥ . Furthermore, x̂  (which is called the 
projection of x onto S) satisfies  
 

x̂x − < yx −  
 

for any other element y∈ S.  
 
Definition: Let S be a closed subspace of a Hilbert space H. 
The mapping  

PS(x)=x̂ , x∈ H, 
 

where x̂  is the projection of x onto S, is called the 
projection mapping of H onto S. 
 
Properties of Projection Mappings: If S, S1, S2 are closed 
subspaces of a Hilbert space H, x,y,xn∈ H, and λ,µ∈  then: 
 

(i)   PS(λx+µy)= λPS(x)+µPS(y)  
(ii)  x∈ S ⇔ PS(x)=x 
(iii)  x∈ S⊥  ⇔ PS(x)=0 
(iv)  x=PS(x)+ ⊥S

P (x) 

(v)  S1⊆ S2 ⇔ 
1SP (

2SP (x))=
1SP (x) 

(vi)  xxn − →0 ⇒ )x(P)x(P SnS − →0  
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Proposition: If M={u1,…,un} is a set of mutually orthogonal 
elements of a Hilbert space H and 0∉ M, then 
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