Imaginary unit:

Complex number:
Cartesian coordinates:

Complex conjugate: $\quad \bar{z}=x-i y$
Absolute value:

$$
r=|z|=\sqrt{x^{2}+y^{2}}
$$

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-i^{2} y^{2}=x^{2}+y^{2}=|z|^{2}
$$

Polar coordinates: $\quad r$ (absolute value or modulus) ω (argument or phase)

$$
\begin{aligned}
& \cos (\omega)=\frac{x}{r} \Rightarrow x=r \cos (\omega), \sin (\omega)=\frac{y}{r} \Rightarrow y=r \sin (\omega) \\
& \tan (\omega)=\frac{\sin (\omega)}{\cos (\omega)}=\frac{y}{x} \Rightarrow \omega=\operatorname{atan}\left(\frac{y}{x}\right)^{1}
\end{aligned}
$$

${ }^{1}$ analogous if z not in $1^{\text {st }}$ quadrant, e.g., $x<0, y>0 \Rightarrow \omega=\pi$-atan $(|y / x|)$

Exercise: Show that the set \mathbf{C}^{n} of n-dimensional complex vectors together with vector addition defined by

$$
z+w=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)+\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)=\left(\begin{array}{c}
z_{1}+w_{1} \\
\vdots \\
z_{n}+w_{n}
\end{array}\right)
$$

is a commutative group.
Exercise: Show that the set \mathbf{C}^{n} together with vector addition defined as above and scalar multiplication defined by

$$
\lambda z=\lambda\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda z_{1} \\
\vdots \\
\lambda z_{n}
\end{array}\right)
$$

is a complex vector space, i.e.,

$$
\begin{aligned}
& \lambda(\mu z)=(\lambda \mu) z, \\
& 1 z=z, \\
& \lambda(z+w)=(\lambda z)+(\lambda w), \\
& (\lambda+\mu) z=(\lambda z)+(\mu z) .
\end{aligned}
$$

Exercise: Show that the inner product of two complex vectors z and w defined by

$$
\langle z, w\rangle=w^{*} z=\overline{\left(w_{1}, \ldots, w_{n}\right)}\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)=\sum_{t=1}^{n} z_{t} \overline{w_{t}},
$$

satisfies
(i) $\langle v+w, z\rangle=\langle v, z\rangle+\langle w, z\rangle$,
(ii) $\langle z, v+w\rangle=\langle z, v\rangle+\langle z, w\rangle$,
(iii) $\langle\lambda z, w\rangle=\lambda\langle z, w\rangle$,
(iv) $\langle v, \lambda w\rangle=\bar{\lambda}\langle v, w\rangle$,
(v) $\langle z, w\rangle=\overline{\langle w, z\rangle}$,
(vi) $\langle z, z\rangle \geq 0$,
(vii) $\langle z, z\rangle=0 \Leftrightarrow \mathrm{z}=0$.

Two complex vectors z and w are said to be orthogonal, if

$$
\langle z, w\rangle=0
$$

Exercise: Show that the norm of a complex vector z defined by

$$
\|z\|=\sqrt{\langle z, z\rangle}=\sqrt{\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{Z}_{\mathrm{t}} z_{t}}=\sqrt{\sum_{t=1}^{n}\left|z_{t}\right|^{2}}
$$

satisfies

$$
\begin{aligned}
& \text { (i) }\|\lambda z\|=|\lambda|\|z\| \text {, } \\
& \text { (ii) }\|z+w\| \leq\|z\|+\|w\| .
\end{aligned}
$$

Hint: Use the Cauchy-Schwarz Inequality

$$
|\langle z, w\rangle| \leq\|z\|\|w\| .
$$

Exercise: Prove the Pythagorean theorem

$$
\langle z, w\rangle=0 \Rightarrow\|z+w\|^{2}=\|z\|^{2}+\|w\|^{2} .
$$

Sinusoid: $\quad g(t)=R \sin (\omega t+\phi)$
Parameters: $R \quad$ (amplitude)
$\omega \quad$ (frequency)
$\phi \quad$ (phase)
A sinusoid is periodic with period $p=\frac{2 \pi}{\omega}$ because

$$
\begin{aligned}
g\left(t+\frac{2 \pi}{\omega}\right) & =R \sin \left(\omega\left(t+\frac{2 \pi}{\omega}\right)+\phi\right) \\
& =R \sin (\omega t+\phi+2 \pi) \\
& =R \sin (\omega t+\phi) \\
& =g(t) .
\end{aligned}
$$

For fixed n, the frequencies $\omega_{k}=\frac{2 \pi}{n} \cdot k, k=0, \ldots,\left[\frac{n}{2}\right]$ are called Fourier frequencies.
$\omega_{1}=\frac{2 \pi}{n} \cdot 1$ implies a period of $p_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi}{\frac{2 \pi}{n} \cdot 1}=n$.
$\omega_{2}=\frac{2 \pi}{n} \cdot 2$ implies a period of $p_{2}=\frac{2 \pi}{\omega_{2}}=\frac{2 \pi}{\frac{2 \pi \cdot 2}{n}}=\frac{n}{2}$.

Exercise: Use the Euler relation

$$
e^{i \omega}=\cos (\omega)+i \sin (\omega)
$$

to show that $e^{i(\omega+2 \pi)}=e^{i \omega}, \overline{e^{i \omega}}=e^{-i \omega}, e^{i\left(\omega_{j}-\omega_{k}\right) n}=1$.
The n vectors

$$
e_{k}=\frac{1}{\sqrt{n}}\left(\begin{array}{c}
e^{i \omega_{k} 1} \\
\vdots \\
e^{i \omega_{k} n}
\end{array}\right), k=0, \ldots n-1
$$

constitute an orthonormal basis for \mathbf{C}^{n} because

$$
\begin{aligned}
\left\langle e_{k}, e_{k}\right\rangle & =\frac{1}{n} \sum_{t=1}^{n} e^{i \omega_{k} t} \overline{e^{i \omega_{k} t}}=\frac{1}{n} \sum_{t=1}^{n} e^{i \omega_{k} t} e^{-i \omega_{k} t}=\frac{1}{n} \sum_{t=1}^{n} e^{0}=1, \\
\left\langle e_{j}, e_{k}\right\rangle & =\frac{1}{n} \sum_{t=1}^{n} e^{i \omega_{j} t} \overline{e^{i \omega_{k} t}}=\frac{1}{n} \sum_{t=1}^{n} e^{i \omega_{j} t} e^{-i \omega_{k} t}=\frac{1}{n} \sum_{t=1}^{n}\left(e^{i\left(\omega_{j}-\omega_{k}\right)}\right)^{t} \\
& =\frac{1}{n} e^{i\left(\omega_{j}-\omega_{k}\right)} \sum_{t=0}^{n-1}\left(e^{i\left(\omega_{j}-\omega_{k}\right)}\right)^{t}=\frac{1}{n} e^{i\left(\omega_{j}-\omega_{k}\right)} \frac{1-e^{i\left(\omega_{j}-\omega_{k}\right) n}}{1-e^{i\left(\omega_{j}-\omega_{k}\right)}} \\
& =0 \text { if } j \neq k .
\end{aligned}
$$

Thus, any $x \in \mathbf{C}^{n}$ has a representation of the form

$$
x=\sum_{k=0}^{n-1} \lambda_{k} e_{k} .
$$

Taking inner products of each side we obtain

$$
\begin{aligned}
& \left\langle x, e_{k}\right\rangle=\left\langle\sum_{j=0}^{n-1} \lambda_{j} e_{j}, e_{k}\right\rangle=\sum_{j=0}^{n-1} \lambda_{j}\left\langle e_{j}, e_{k}\right\rangle=\lambda_{\mathrm{k}}\left\langle e_{k}, e_{k}\right\rangle=\lambda_{\mathrm{k}}, \\
& \lambda_{\mathrm{k}}=\left\langle x, e_{k}\right\rangle=e_{k}^{*} x=\frac{1}{\sqrt{n}} \sum_{\mathrm{t}=1}^{n} \mathrm{x}_{\mathrm{t}} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} t}, \\
& \|x\|^{2}=\langle x, x\rangle=\sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \lambda_{k} \bar{\lambda}_{j}\left\langle e_{k}, e_{j}\right\rangle=\sum_{k=0}^{n-1} \lambda_{k} \bar{\lambda}_{k}=\sum_{k=0}^{n-1}\left|\lambda_{k}\right|^{2} .
\end{aligned}
$$

Exercise: Show that $\frac{1}{n} \sum_{t=1}^{n}\left(x_{t}-\bar{x}\right)^{2}=\frac{1}{n} \sum_{k \neq 0}\left|\lambda_{k}\right|^{2}$.
Note: For a given time series x_{1}, \ldots, x_{n} observed at times $1, \ldots, n$ or time intervals $(0,1), \ldots,(n-1, n)$, the size of $\left|\lambda_{\mathrm{k}}\right|$ therefore indicates how much of the sample variance can be attributed to frequency ω_{k}.

Suppose that $x \in \mathbf{R}^{n}$. If $1 \leq k<\frac{n}{2}$, then

$$
\begin{aligned}
& e^{i \omega_{n-k} t}=e^{i \frac{2 \pi(n-k)}{n} t}=e^{i\left(2 \pi-\frac{2 \pi k}{n}\right) t}=e^{-i \frac{2 \pi k}{n} t}=e^{-i \omega_{k} t}=\overline{e^{i \omega_{k} t}} \\
& \begin{aligned}
\lambda_{n-k}=\frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_{t} e^{-i \omega_{n-k} t} & =\frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_{t} \overline{e^{-i \omega_{k} t}}=\frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_{t} e^{-i \omega_{k} t}
\end{aligned}=\overline{\lambda_{k}}, \\
& \begin{aligned}
\lambda_{k} \frac{e^{i \omega_{k} t}}{\sqrt{n}}+\lambda_{n-k} \frac{e^{i \omega_{n-k} t}}{\sqrt{n}}= & =\frac{\lambda_{k}}{\sqrt{n}} e^{i \omega_{k} t}+\overline{\overline{\lambda_{k}}} \overline{\sqrt{n}} e^{i \omega_{k} t} \\
= & \left(a_{k}+i b_{k}\right)\left(\cos \left(\omega_{k} t\right)+i \sin \left(\omega_{k} t\right)\right) \\
& +\left(a_{k}-i b_{k}\right)\left(\cos \left(\omega_{k} t\right)-i \sin \left(\omega_{k} t\right)\right) \\
= & 2 a_{k} \cos \left(\omega_{k} t\right)-2 b_{k} \sin \left(\omega_{k} t\right) \\
= & R_{k} \sin \left(\phi_{k}\right) \cos \left(\omega_{k} t\right)+R_{k} \cos \left(\phi_{k}\right) \sin \left(\omega_{k} t\right) \\
= & R_{k} \sin \left(\omega_{k} t+\phi_{k}\right),
\end{aligned}
\end{aligned}
$$

where R_{k} and ϕ_{k} are the polar coordinates of $-2 b_{k}+2 a_{k} i$, i.e.,

$$
2 a_{k}=R_{k} \sin \left(\phi_{k}\right),-2 b_{k}=R_{k} \cos \left(\phi_{k}\right)
$$

[^0]If $k=\frac{n}{2}$, then

$$
\begin{aligned}
& \omega_{k}=\frac{2 \pi k}{n}=\pi, e^{i \omega_{k} t}=e^{i \pi t}=\cos (\pi t)+\underbrace{\sin (\pi t)}_{=0}=\sin \left(\pi t+\frac{\pi}{2}\right) \\
& \lambda_{k}=\frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_{t} \cos (\pi t)=\frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_{t}(-1)^{t} \in \mathbf{R} \\
& \frac{\lambda_{k}}{\sqrt{n}} e^{i \omega_{k} t}=R_{k} \cos (\pi t)=R_{k} \sin \left(\pi t+\frac{\pi}{2}\right)=R_{k} \sin \left(\omega_{k} t+\phi_{k}\right)
\end{aligned}
$$

If $k=0$, then

$$
\begin{aligned}
& \omega_{k}=\frac{2 \pi 0}{n}=0, e^{i \omega_{k} t}=e^{i 0 t}=1, \\
& \lambda_{k}=\frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_{t} \cdot 1=\sqrt{n} \frac{1}{n} \sum_{t=1}^{n} x_{t}=\sqrt{n} \bar{x} \in \mathbf{R}, \\
& \frac{\lambda_{k}}{\sqrt{n}} e^{i \omega_{k} t}=\bar{x}
\end{aligned}
$$

Thus,

$$
x_{t}=\frac{1}{\sqrt{n}}\left(\lambda_{0}+\sum_{k=1}^{n-1} \lambda_{k} e^{i \omega_{k} t}\right)=\bar{x}+\sum_{k=1}^{[n / 2]} R_{k} \sin \left(\omega_{k} t+\phi_{k}\right)
$$

The periodogram of x_{1}, \ldots, x_{n} is defined by

$$
I(\omega)=\frac{1}{2 \pi n}\left|\sum_{t=1}^{n} x_{t} e^{-i \omega t}\right|^{2}
$$

For $1 \leq k<\frac{n}{2}$,
$I\left(\omega_{k}\right)=\frac{1}{2 \pi}\left|\lambda_{k}\right|^{2}=\frac{1}{2 \pi}\left(a_{k}^{2}+b_{k}^{2}\right)=\frac{1}{8 \pi}\left(\left(2 a_{k}\right)^{2}+\left(-2 b_{k}\right)^{2}\right)=\frac{1}{8 \pi} R_{k}^{2}$.
It will be shown later that for any nonzero Fourier frequency $\omega_{k}, I\left(\omega_{k}\right)$ can be written as

$$
I\left(\omega_{k}\right)=\frac{1}{2 \pi} \sum_{j=-(n-1)}^{n-1} \hat{\gamma}(j) e^{-i \omega_{k} j}
$$

where

$$
\hat{\gamma}(j)=\frac{1}{n} \sum_{\mathrm{t}=1}^{\mathrm{n}-|j|}\left(x_{t}-\bar{x}\right)\left(x_{t+|j|}-\bar{x}\right)
$$

is the sample autocovariance at $\operatorname{lag} j$.

If the observations x_{1}, \ldots, x_{n} come from a stationary process x, the periodogram $I(\omega)$ may be regarded as a sample analogue of the function

$$
f(\omega)=\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} \gamma(j) e^{-i \omega j}
$$

which is called the spectral density of the process x.
The stationarity of the process x implies that all x_{t} have the same mean and the same variance and the autocovariances

$$
\mathcal{Z}(j)=\operatorname{Cov}\left(x_{t}, x_{t-j}\right)
$$

depend only on j but not on t.

Exercise: Show that $\int_{-\pi}^{\pi} e^{i \omega k} d \omega=0$ if $k \neq 0$.
Assuming that the interchange of summation and integration is justified we can derive the spectral representation of the autocovariance function γ of a stationary process x with spectral density f as follows:

$$
\begin{aligned}
\int_{-\pi}^{\pi} e^{i \omega k} f(\omega) d \omega & =\int_{-\pi}^{\pi} e^{i \omega k} \frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} \gamma(j) e^{-i \omega j} d \omega \\
& =\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} \gamma(j) \int_{-\pi}^{\pi} e^{i \omega(k-j)} d \omega \\
& =\frac{1}{2 \pi} \gamma(k) \int_{-\pi}^{\pi} e^{i \omega(k-k)} d \omega \\
& =\gamma(k)
\end{aligned}
$$

Remark: Let

$$
f_{J}(\omega)=\sum_{j=-J}^{J} \gamma(j) \cos (\omega j)
$$

If

$$
g(\omega)=\sum_{j=-\infty}^{\infty}|\gamma(j)|<\infty,
$$

then

$$
\int_{-\pi}^{\pi} g(\omega) d \omega<\infty
$$

and, by the dominant convergence theorem,

$$
\lim _{J \rightarrow \infty} \int_{-\pi}^{\pi} f_{J}(\omega) d \omega=\int_{-\pi}^{\pi} \lim _{J \rightarrow \infty} f_{J}(\omega) d \omega,
$$

because

$$
\left|f_{J}(\omega)\right| \leq \sum_{j=-J}^{J}|\gamma(j) \cos (\omega j)| \leq \sum_{j=-J}^{J}|\gamma(j)| \leq g(\omega)
$$

Remark: It follows from

$$
f(\omega)=\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} \gamma(j) e^{-i \omega j}
$$

and

$$
\gamma(j)=\int_{-\pi}^{\pi} e^{i \omega j} f(\omega) d \omega
$$

that the spectral density f and the autocovariance function γ contain the identical information.

Given n observations x_{1}, \ldots, x_{n}, the periodogram

$$
I(\omega)=\frac{1}{2 \pi} \sum_{j=-(n-1)}^{n-1} \hat{\gamma}(j) e^{-i \omega j}
$$

is a very erratic estimator for the spectral density, because the sample autocovariances

$$
\hat{\gamma}(j)=\frac{1}{n} \sum_{t=1}^{n-|j|}\left(x_{t}-\bar{x}\right)\left(x_{t+|j|}-\bar{x}\right)
$$

contain very few products $\left(x_{t}-\bar{x}\right)\left(x_{t+|j|}-\bar{x}\right)$ if $|j|$ is large.

An obvious improvement is to give less weight to the more variable sample autocovariances.
An estimator of the type

$$
\hat{f}(\omega)=\frac{1}{2 \pi} \sum_{j=-(n-1)}^{n-1} w_{j} \hat{\gamma}(j) e^{-i \omega j}
$$

is called a weighted covariance estimator. A widely used estimator is the Bartlett estimator which uses the triangle weights

$$
w_{j}=\left\{\begin{array}{cl}
1-\frac{|j|}{M} & \text { if }|j|<M, \\
0 & \text { else } .
\end{array}\right.
$$

The truncation point M is an important parameter for controlling the smoothness of the estimator.
An alternative method of smoothing the periodogram is to take weighted averages over neighboring frequencies. A widely used smoothed periodogram estimator is the modified Daniell smoother, which differs from a simple moving average of the periodogram only in that the first and the last weight are only half as large as the others.

Exercise: Spectral analysis of the postwar US GDP

- Create a working directory, say C:\GDPq, for the analysis of the quarterly US GDP.
- Download the real Gross Domestic Product (quarterly, seasonally adjusted) as a csv file from the website of the Federal Reserve Bank of St. Louis into your working directory. The downloaded file GDPC1.csv consists of two columns (dates and GDP values).
- Import the data into R and plot the GDP, the log GDP, the differenced \log GDP, and the periodogram of the differences.
setwd("C:/GDPq") \# comment: set working directory D <- read.csv("GDPC1.csv") \# import data d <- D[,1] \# 1st column of D: dates v <-D[,2] \# 2nd column of D: GDP values d <- as.Date(d) \# convert character strings to dates $\mathrm{N}<-$ length(v) \# N = no. of quarters = length of vector \mathbf{v} $\operatorname{par}(m f r o w=c(2,2)) \quad$ \# subsequent plots in 2×2 array $\operatorname{par}(\operatorname{mar}=c(2,2,1,1))$ \# set narrow margins for plots
plot(d,v,pch=20) \# plot GDP values against dates $\mathrm{y}<-\log (\mathrm{v}) ; \operatorname{plot}(\mathrm{d}, \mathrm{y}, \mathrm{pch}=20)$ \# plot character: solid circle $\mathbf{r}<-\mathrm{y}[2: \mathrm{N}]-\mathrm{y}[1:(\mathbf{N}-1)] ; \mathbf{n}<-\mathbf{N}-1 \# \mathrm{n}=\mathbf{n o}$. of differences plot(d[2:N],r,pch=20,type="o") \# overplot points\&lines $\mathrm{h}<-$ spec.pgram(r,taper=0, detrend=F,fast=F,plot=F) $\mathrm{c}<-2^{*} \mathrm{pi} ; \mathrm{f}<-\mathrm{c} * \mathrm{~h}$ \$freq \# Fourier fr. between 0 and pi pg <- h\$spec/c; plot(f,pg,type="0",pch=20) \# periodogr.

- Smooth the periodogram with the modified Daniell

 smoother.```
par(mfrow=c(1,1)) # single plot
plot(f,pg,type="l") # only lines, no points
h <- spec.pgram(r,taper=0,detrend=F,fast=F,plot=F,
 spans=13)
lines(c*h$freq,h$spec/c,col="green",lwd=2)
add line to existing plot with line width twice as wide
h <- spec.pgram(r,taper=0,detrend=F,fast=F,plot=F,
 spans=101)
lines(c*h$freq,h$spec/c,col="red",lwd=2)
```



The higher the span (the total number of terms in the moving average), the smoother the estimate.


[^0]:    ${ }^{2} \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$

