(i> =-1) Polar coordinates: r  (absolute value or modulus)

Imaginary unit: i
Complex number: Z=X+iy @ (argument or phase)
Cartesian coordinates:  x (.real part) cos(@) = = x = 1 cos(@) , sin(@) =2 = y = rsin(e)
y (imaginary part) 4 » r
. — . w 1
Complex conjugate: z=x-1y tan(w) = %(w) =< = p=atan(3)

Absolute value: r= |z| =Jx% +y? 2]

Z=(x+iy)(x—iy)=x> —i’y* =x? + y? :|Z|2

K
]

N|

o "analogous if z not in 1% quadrant, e.g., x<0, y>0 = @=7—atan(|y/x|)




Exercise: Show that the set C" of n-dimensional complex
vectors together with vector addition defined by

ztw=| |+ |= :
z, w, z, arF w,
is a commutative group. FG
Exercise: Show that the set C" together with vector
addition defined as above and scalar multiplication
defined by
z Az,
Az=A| ¢ |=
z, Az,
is a complex vector space, i.¢.,
Muz)=(A )z,
1z=z,
AUztw)=(Az)H(Aw),
(At p)z=(Az)H(uz). FV

Exercise: Show that the inner product of two complex
vectors z and w defined by

i
emwrz=Cn ) | =D 2w,
=1
Zn
satisfies
(1) <v+w,z>=<v,z>+<w,z>,
(i1) <Z,v + w> = z,v> +<Z, w> ,
(i) (Az,w)=A(z,w),
(iv) <v, ﬂ,w> —i7, <v, w> ,
(v) <z, w> =<w, z> ,
(vi) <z,z> >0,
(vii) <Z,Z> =0 < z=0. FI

Two complex vectors z and w are said to be orthogonal, if
<Z, w> =0.



Exercise: Show that the norm of a complex vector z

defined by

== S - 3

t=

satisfies

@[22l =[] ][,

(if) [z-+w] <[] +]w
Hint: Use the Cauchy-Schwarz Inequality

()<l -

Exercise: Prove the Pythagorean theorem

(2.w) =0 = 24wl =[] >+ ]w]*

Z|

FN

FP

Sinusoid: g(t) = R sin(wt + @)

Parameters: R (amplitude)
10, (frequency)
@ (phase)

A sinusoid is periodic with period p = 2{—0” because
g(t+ 2{—;’) =R sin(w(t + 27”) + @)
=R sin(wt+¢+2r)
= R sin(wt + @)
=g().

For fixed n, the frequencies @, = 27” k, k=0,....[5]

are called Fourier frequencies.

N

—27 .1 ; i i =22 —
w; ==~ -1 implies a period of p; =% = 27,
n

=27 .9 i i =2z _ 27z _
@, ==£-2 implies a period of p, = =,
n

SIS



Exercise: Use the Euler relation

“ =cos(w) +1isin(w)

to show that &' (®™) =@ (/@ =7
The n vectors
eia)kl
ekZﬁ , k=0,...n—
eia)kn

b

1,

constitute an orthonormal basis for C" because

n _— n n
<€ e >:l ei(ukt ei(ukt 1 eiwkte*iwkt 1 eO :1’
k>%k n n n
t=1 t=1 =1
n oo P noo. ; n ” )
iwit jw,t ot —jw,t i(w;—w; ) \t
<e ek>—i e /e ZiZe e 'k =1 Z(e )
n n n
t=1 t=1

t=1

n-1
. i(w;—ay) i(w;—w)
_ie J kz(e Jj k)l
t=0

=0 if j=k.

n

ei(wj—a)k)

1—

SE

ei(wj—cuk)n ~1.

FB

i(wj-wy )n

Thus, any xeC" has a representation of the form FS
n—1
k=0

Taking inner products of each side we obtain

<x ek> ZA/ e;,e =le<ej,ek>=kk<ek,ek>=kk,

I

— R | —im ¢
Xk—<x,ek>—ekx—ﬁ X ,

t=1

n—1 n—1 n—1 _ n—1
||x||2 =<x, X> Z Z /Wv <ek’ej> - Z A = ZVH2 -

k=0j=0 ;=0 k=0
n
: - 2
Exercise: Show that 1 > (x, %) =1 > |4, FF
t=1 k#0

Note: For a given time series xj,...,x, observed at times
1,...,n or time intervals (0,1),...,(n—1,n), the size of [Ag|
therefore indicates how much of the sample variance can
be attributed to frequency .




Suppose that xeR". If 1<k<Z, then AZ
2a(n—k o 2mk 2xk
eiwn_kt _ e’ LZ )f _ 81(271—%)! —l%f —iopt _ okt

=e =e err

n n n _
/1 :sz e*’wn—k’ :sz e—zwkt :sz e—zwkt :/1
n—k \/; - t \/; 1 t J; 1 t k o
t= = t=

iwjt

In

eimn—kt _ﬂ_keiwkt

M okt
= +—=e
\n

Vn Vn
=(a; +ib,)(cos(w,t)+1i sin(w,;t))

+ A,

+ (a; —ib; )(cos(w,t) —i sin(w,t))
=2a,; cos(w,t)—2b, sin(w,t)
= R, sin(@, ) cos(w,t) + R, cos(g, ) sin(w,t)
= R,sin(w,t+4,),

where Ry and ¢ are the polar coordinates of —2b;+2ayi, i.e.,
2a;, = R sin(¢y.), —2b; = R, cos(¢y) -

* sin( e+ f)=sin( @)cos(f)+cos(a)sin( )

If k=%, then
w, =2 =7, ek = ™ = cos(nt) + sin(xt) = sin(xt + 1),
=0
n n
— 1 =l 1!
A = ﬁ;x, cos(mt) = ﬁ;xt( )" R,
%e"“’k’ — R, cos(wt) = R sin(xt +%) = R, sin(wyt +4,) -
If k=0, then
W, = 27;0 -0, eiwkt :eiOt :1,
n n
A :ﬁZx, -1:«/;%2% =Jnx eR,
=1 =1
i_keiwkt —=
- :
Thus,
n—1 . [n/2]
1 ot | _ — 0
X = N +;/1ke Hil=x+ ;Rk sin(aw,t +¢,).



The periodogram of xi,...,x, is defined by

2

1((0): 271rn lee_iw[
=1
For [<k<7,
2
Ko)=55 || =35 (@) = ((2a,) +(=2b,)°) =5 R} .

It will be shown later that for any nonzero Fourier frequency
@, I( @) can be written as

n—1
Ko)=5- D 5G) ™,
j==(n=1)
where
n—/]

7()=1 Z(xt —)_C)(xH\j\ —X)
=1

is the sample autocovariance at lag ;.

If the observations xj,...,x, come from a stationary

process x, the periodogram /(@) may be regarded as a
sample analogue of the function

Ror=3 Yy e,
j==o
which is called the spectral density of the process x.

The stationarity of the process x implies that all x; have the
same mean and the same variance and the autocovariances

H)=Cov(x,x.7)

depend only on j but not on ¢.



Exercise: Show that j e de =0 if k0. A0

Assuming that the interchange of summation and integration
is justified we can derive the spectral representation of the
autocovariance function y of a stationary process x with
spectral density fas follows:

.Teiwkf(w)dw= ]Eei(uk 2_1” iyo-)e—iwj do

- Jj=—©

- i iy(]) J'eiw(k*j) A

Jj=—® -
_ 1 T iw(k—k)
= L y(k) j e* P dey

= k)

Remark: Let

J
filw)= Zm) cos(w ).

If
&)= Y] <.
then o
J to)do <z

and, by the dominant convergence theorem,
li do = | li do,
lim j 1 (e )de> j lim (@ )deo
because

J J
£ (@) < D pG)cos(@) < D |y < g(@).
j=—J e

AR



Remark: It follows from

flar4 3 )™

Jj=—00
and )= Te"‘”f flw)dw

that the spectral density f'and the autocovariance
function y contain the identical information.

Given n observations xi,...,x,, the periodogram

n—1
Ko)y=5- D 3G)e™
Jj==(n-1)
is a very erratic estimator for the spectral density, because
the sample autocovariances

nj

7(]):% ;(Xt —J_C)(XH\_,-\ -X)

contain very few products (x, —X)(x, A x) if | j| is large.

An obvious improvement is to give less weight to the more
variable sample autocovariances.
An estimator of the type

n—1
fl@)=5 D wig)e™
j=—(n-1)
is called a weighted covariance estimator. A widely used
estimator is the Bartlett estimator which uses the triangle

weights
_
Wi= ! M
0

The truncation point M is an important parameter for
controlling the smoothness of the estimator.

if |j]<M,
else.

An alternative method of smoothing the periodogram is to
take weighted averages over neighboring frequencies. A
widely used smoothed periodogram estimator is the
modified Daniell smoother, which differs from a simple
moving average of the periodogram only in that the first
and the last weight are only half as large as the others.



Exercise: Spectral analysis of the postwar US GDP

e Create a working directory, say C:\GDPq, for the
analysis of the quarterly US GDP.

e Download the real Gross Domestic Product (quarterly,
seasonally adjusted) as a csv file from the website of the
Federal Reserve Bank of St. Louis into your working
directory. The downloaded file GDPC1.csv consists of
two columns (dates and GDP values).

e Import the data into R and plot the GDP, the log GDP, the
differenced log GDP, and the periodogram of the
differences.

setwd("C:/GDPq'') # comment: set working directory
D <-read.csv("GDPCl.csv") # import data

d <-D|[,1] # 1st column of D: dates

v <-D[,2] # 2nd column of D: GDP values

d <- as.Date(d) # convert character strings to dates

N <-length(v) # N = no. of quarters = length of vector v
par(mfrow=c(2,2)) # subsequent plots in 2x2 array
par(mar=c(2,2,1,1)) # set narrow margins for plots

plot(d,v,pch=20) # plot GDP values against dates

y <- log(v); plot(d,y,pch=20) # plot character:solid circle
r <- y[2:N]-y[1:(N-1)]; n <- N-1 # n = no. of differences
plot(d[2:N],r,pch=20,type="0") # overplot points&lines
h <- spec.pgram(r,taper=0,detrend=F,fast=F,plot=F)

¢ <- 2*pi; f <- c*hS$freq # Fourier fr. between 0 and pi
pg <- h$spec/c; plot(f,pg,type=""0",pch=20) # periodogr.

- /| 5
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e Smooth the periodogram with the modified Daniell
smoother.

par(mfrow=c(1,1)) # single plot

plot(f,pg,type="1") # only lines, no points

h <-spec.pgram(r,taper=0,detrend=F,fast=F,plot=F,

spans=13)

lines(c*h$freq,h$spec/c,col="green" ,lwd=2)

# add line to existing plot with line width twice as wide

h <-spec.pgram(r,taper=0,detrend=F,fast=F,plot=F,
spans=101)

lines(c*h$freq,h$spec/c,col="red" ,lwd=2)

1e-04

8e-05

6e-05

4e-05

2e-05

Oe+00
]

T T T T T T T
0.0 0.5 1.0 15 20 25 30

The higher the span (the total number of terms in the
moving average), the smoother the estimate.
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