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Imaginary unit:   i     ( 1
2 −=i )

 

Complex number:  yixz +=  

Cartesian coordinates: x       (real part) 

       y       (imaginary part) 

Complex conjugate:  yixz −=  

Absolute value:   
22 yxzr +==  

222222))(( zyxyixyixyixzz =+=−=−+=  

 

Polar coordinates:  r   (absolute value or modulus) 

      ω  (argument or phase) 

⇒=
r
x)cos(ω )cos(ωrx = , ⇒=
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y
)sin(ω )sin(ωry =  

)(atan)tan(
)cos(

)sin(
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x

y =⇒== ωω ω
ω
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1
 analogous if z not in 1

st
 quadrant, e.g., x<0, y>0 ⇒ ω=π−atan(|y/x|)  
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Exercise: Show that the set C
n
 of n-dimensional complex 

vectors together with vector addition defined by 
    

z+w=
















nz

z

M

1

+





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

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is a commutative group.                                                  FG 

 

Exercise: Show that the set C
n
 together with vector 

addition defined as above and scalar multiplication 

defined by 

λ z=λ
















nz

z

M

1

=
















nz

z

λ

λ

M

1

  

is a complex vector space, i.e., 

     λ(µ z)=(λ µ)z, 

                           1 z=z, 

                     λ(z+w)=(λ z)+(λ w), 

     (λ+µ)z=(λ z)+(µ z).                         FV 

Exercise: Show that the inner product of two complex 

vectors z and w defined by  

〈z,w〉=w*z= ),...,( 1 nww
















nz

z

M

1

=∑
=

n

t

tt wz
1

, 

satisfies 

       (i)  zwv ,+ = zv, + zw, ,  

       (ii)  wvz +, = vz, + wz, ,  

       (iii)  wz,λ =λ wz, ,  

       (iv)  wv λ, = wv,λ ,  

       (v)  wz, = zw, , 

         (vi)  zz, ≥0, 

       (vii)  zz, =0 ⇔ z=0.                            FI 

 

Two complex vectors z and w are said to be orthogonal, if 

                               wz, =0. 
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Exercise: Show that the norm of a complex vector z 

defined by  

z = zz, = ∑
=

n

1t

tz tz = ∑
=

n

t

tz
1

2
 

satisfies  

   (i) zλ = λ z ,  

   (ii) wz + ≤ z + w .                      FN 

Hint: Use the Cauchy-Schwarz Inequality   

wz, ≤ z w . 

 

Exercise: Prove the Pythagorean theorem  

 0, =wz  ⇒ wz + 2
= z

2
+ w

2
.                 FP 

 

 

 

 
 

 

 

 

 

Sinusoid:  )sin()( φ+= tωRtg  

Parameters: R   (amplitude) 

    ω   (frequency) 

φ   (phase) 

A sinusoid is periodic with period ω
π2=p  because 

                ))(sin()( 22 φω
π

ω
π ++=+ tωRtg          

                               )2sin( πφ ++= tωR  

                               )sin( φ+= tωR  

                               )(tg= . 

For fixed n, the frequencies k
nk ⋅= πω 2 , k=0,…, ][

2
n    

are called Fourier frequencies. 

12
1 ⋅=

n
πω  implies a period of np

n

===
⋅12

2

1

2
1 π

π
ω
π .  

22
2 ⋅=

n
πω  implies a period of 

222
2

2

2
2

n

n

p ===
⋅π
π

ω
π . 

                                              M  
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Exercise: Use the Euler relation                                       FE   

)sin()cos( ωω ie ωi +=  

to show that  ωiωi ee =+ )2( π ,  ωiωi ee −= , 1=
− n)kωj(ωi

e . 
 

The n vectors                                                                    FB    

ek=
n

1

















ni

i

k

k

e

e

ω

ω

M

1

, k=0,…n−1, 

constitute an orthonormal basis for C
n
 because 

kk ee , =
n
1 ∑

=

n

t

tiωtiω kk ee
1

=
n
1 ∑

=

−
n

t

tiωtiω kk ee
1

=
n
1 ∑

=

n

t

e
1

0 =1,   

kj ee , =
n
1 ∑

=

n

t

tiωtiω
kj ee

1

=
n
1 ∑

=

−
n

t

tiωtiω
kj ee

1

=
n
1 ∑

=

−
n

t

t)ωi(ω
)(e kj

1

 

      =
n
1 )( kji

e
ωω − ∑

=

−
1

0

n-

t

t)ωi(ω
)(e kj =

n
1 )( kji

e
ωω −

)-ωi(ω

)n-ωi(ω

kj

kj

e

e

−

−

1

1
 

      = 0  if j≠k. 

 

Thus, any x∈C
n
 has a representation of the form             FS 

∑
−

=

=
1

0

n

k

kkex λ . 

Taking inner products of each side we obtain  

kex, = k

n

j

jj ee ,
1

0

∑
−

=

λ = kj

n

j

j ee ,
1

0

∑
−

=

λ =λk kk ee , =λk, 

λk= kex, = xek
* =

n

1 ∑
=

−
n

t

1t

iω
t

kex , 

      
2

x = xx, =∑∑
−

=

−

=

1

0

1

0

n

k

n

j

jkλλ jk ee , =∑
−

=

1

0

n

k

kkλλ =∑
−

=

1

0

2
n

k

kλ .               

 

Exercise: Show that 
n
1 ∑

=

−
n

t

t xx
1

2)( =
n
1 ∑

≠0

2

k

kλ .               FF 

Note: For a given time series x1,…,xn observed at times 

1,…,n or time intervals (0,1),…,(n−1,n), the size of |λk|  

therefore indicates how much of the sample variance can 

be attributed to frequency ωk. 
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Suppose that x∈R
n
.  If 1≤k<

2
n , then                                 AZ 

 
tkωitkωit

n

kπ
it

n

kπ
πit

n

k)(nπ
itn-kωi

eeeeee ===== −−−
− 2

)
2

2(
2
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 k

n

t

tkωi
tn

n

t

tkωi
tn

n

t

tn-kωi
tnkn λexexexλ ==== ∑∑∑

=

−

=

−

=

−
−

1

1

1

1

1

1 , 

 
n

tknωi
e

knn

tkωi
e

k λλ
−

−+ tkωi

n

kλtkωi

n

kλ
ee +=  

                                  ))sin())(cos(( tωitωiba kkkk ++=  

                                      ))sin())(cos(( tωitωiba kkkk −−+  

                                  )sin(2)cos(2 tωbtωa kkkk −=  

                  )sin()cos()cos()sin( tωRtωR kkkkkk φφ +=   

                 )sin( kkk tωR φ+= ,
2
 

where Rk and φk are the polar coordinates of −2bk+2ak i, i.e.,   

                   )sin(2 kkk Ra φ= , )cos(2 kkk Rb φ=− .  
 
 
 

 

                                                           
2
 sin(α+β)=sin(α)cos(β)+cos(α)sin(β) 

 

If k=
2
n , then 

 ππ ==
n

k

kω
2 , )sin()sin()cos(

2

0

πtπitkωi
tπtπtπee +=+==

=
321

,     

 ∑∑
==

==
n

t

t
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n

t

tnk -xt)(πxλ
1

1

1

1 )1(cos ∈R, 

 
tkωi

n

kλ
e  )sin()sin()cos(

2 kkk
π

kk tωRtπRtR φπ +=+== .   

If k=0, then 

 0
02 ==

nkω
π , 10 == titkωi
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 xnxnxλ
n

t
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n

t

tnk ==⋅= ∑∑
== 1

1

1

1 1 ∈R, 

 xe
tkωi

n

kλ = .   
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++=
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


+=

]2/[

1

1

1

0
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n

k
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n

k
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The periodogram of x1,…,xn is defined by 

      I(ω)=
nπ2

1

2

1

∑
=

−
n

t

tiω
tex . 

For 1≤k<
2
n ,  

 I(ωk)=
2

2
1

kλπ = )( 22

2
1

kk ba +π = ))2()2(( 22

8
1

kk ba −+π =
2

8
1

kRπ . 

It will be shown later that for any nonzero Fourier frequency 

ωk, I(ωk) can be written as 
 

  I(ωk)= π2
1 jk-iω

n

)(nj

e(j)γ∑
−

−−=

1

1

ˆ , 

where 

)(ˆ jγ = ∑
−

=
+ −−

j

jttn
xxxx

n

1t

1 ))((  

is the sample autocovariance at lag j.  

If the observations x1,…,xn come from a stationary 

process x, the periodogram I(ω) may be regarded as a 

sample analogue of the function 
 

f(ω)=
π2

1 j-iω

j

eγ(j)∑
∞

−∞=

, 

which is called the spectral density of the process x. 
 

The stationarity of the process x implies that all xt have the 

same mean and the same variance and the autocovariances 
 

                                 γ(j)=Cov(xt,xt-j) 

depend only on j but not on t. 
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Exercise: Show that ∫
π

-π

kiω dωe =0 if k≠0.                        A0 

 

Assuming that the interchange of summation and integration 

is justified we can derive the spectral representation of the 

autocovariance function γ of a stationary process x with 

spectral density f as follows: 
 

     ∫
π

-π

kiω dω)f(ωe  = ∫
π

-π

kiωe
π2

1 j-iω

j

eγ(j)∑
∞

−∞=

dω 

     = 
π2

1 ∑
∞

−∞=j

γ(j) ∫ −
π

-π

j)(kiωe dω 

     = 
π2

1 γ(k) ∫ −
π

-π

k)(kiω dωe    

                = γ(k)                      

 

 
 
 
 
 

 

Remark:  Let  

j)(ωγ(j))(ωf
J

Jj

J cos∑
−=

= . 

If 

∞<= ∑
∞

−∞=j

γ(j))g(ω , 

then 

∫ ∞<
π

-π

dω)g(ω  

and, by the dominant convergence theorem, 

 ∫ ∫ ∞→∞→
=

π

-π

π

-π

J
J

J
J

dω)(ωfdω)(ωf limlim , 

because  

       ≤)(ωf J ≤≤ ∑∑
−=−=

J

Jj

J

Jj

γ(j)j)(ωγ(j)cos g(ω).  

                                                                                 AR 
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Remark: It follows from 

f(ω)=
π2

1 j-iω

j

eγ(j)∑
∞

−∞=

 

and                      γ(j)= ∫
π

-π

jiω dω)f(ωe  

that the spectral density f and the autocovariance 

function γ contain the identical information.  
 

Given n observations x1,…,xn, the periodogram  

I(ω)= j-iω
n

)(nj
π

e(j)γ∑
−

−−=

1

1
2
1 ˆ  

is a very erratic estimator for the spectral density, because 

the sample autocovariances 
   

)(ˆ jγ = ∑
−

=
+ −−

jn

t
jttn

)x)(xx(x
1

1  

contain very few products ))(( xxxx
jtt −− +  if j  is large.  

 

An obvious improvement is to give less weight to the more 

variable sample autocovariances. 
                                                                               

An estimator of the type 

)(ˆ ωf = j-iω
n

)(nj

j e(j)γw∑
−

−−=

1

1
2π
1 ˆ  

is called a weighted covariance estimator. A widely used 

estimator is the Bartlett estimator which uses the triangle 

weights 

                                                                          wj=




 <−

else.

M,jif
M

j

0

1
 

The truncation point M is an important parameter for 

controlling the smoothness of the estimator.  
 

An alternative method of smoothing the periodogram is to 

take weighted averages over neighboring frequencies. A 

widely used smoothed periodogram estimator is the 

modified Daniell smoother, which differs from a simple 

moving average of the periodogram only in that the first 

and the last weight are only half as large as the others. 
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Exercise: Spectral analysis of the postwar US GDP 

• Create a working directory, say C:\GDPq, for the 

analysis of the quarterly US GDP. 
 

• Download the real Gross Domestic Product (quarterly, 

seasonally adjusted) as a csv file from the website of the 

Federal Reserve Bank of St. Louis into your working 

directory. The downloaded file GDPC1.csv consists of  

two columns (dates and GDP values). 
 

• Import the data into R and plot the GDP, the log GDP, the 

differenced log GDP, and the periodogram of the 

differences.  
 

setwd("C:/GDPq")  # comment: set working directory 

D <- read.csv("GDPC1.csv")  # import data 

d <- D[,1] # 1st column of D: dates 

v <-D[,2] # 2nd column of D: GDP values 

d <- as.Date(d) # convert character strings to dates 

N <- length(v) # N = no. of quarters = length of vector v 

par(mfrow=c(2,2))    # subsequent plots in 2x2 array 

par(mar=c(2,2,1,1))  # set narrow margins for plots    

plot(d,v,pch=20) # plot GDP values against dates  

y <- log(v); plot(d,y,pch=20) # plot character: solid circle 

r <- y[2:N]-y[1:(N-1)]; n <- N-1 # n = no. of differences 

plot(d[2:N],r,pch=20,type="o") # overplot points&lines  

h <- spec.pgram(r,taper=0,detrend=F,fast=F,plot=F) 

c <- 2*pi; f <- c*h$freq # Fourier fr. between 0 and pi 

pg <- h$spec/c; plot(f,pg,type="o",pch=20) # periodogr. 
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• Smooth the periodogram with the modified Daniell 

smoother. 
 

par(mfrow=c(1,1)) # single plot 

plot(f,pg,type="l") # only lines, no points 

h  <- spec.pgram(r,taper=0,detrend=F,fast=F,plot=F, 

                                spans=13)  

lines(c*h$freq,h$spec/c,col="green",lwd=2) 

# add line to existing plot with line width twice as wide 

h  <- spec.pgram(r,taper=0,detrend=F,fast=F,plot=F, 

                                  spans=101) 

lines(c*h$freq,h$spec/c,col="red",lwd=2) 

 

 

 

 

The higher the span (the total number of terms in the 

moving average), the smoother the estimate.   


