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Exercise:  Show that TC

yn ¾®¾L c Þ yn ¾®¾p c.

Solution:

yn ¾®¾L c Þ nyF (l) ® Fc (l) = I[c,¥)(l) "l¹c

Þ P( cyn - <e) = P(c-e<yn<c+e)

³ P(c- 2
e <yn£c+ 2

e )

                      = nyF (c+ 2
e )- nyF (c- 2

e )

® Fc(c+ 2
e )-Fc(c- 2

e )=1-0

Remarks:

(i) Fc(l) is not continuous at l=c.

(ii) In general, we have

yn ¾®¾p y Þ yn ¾®¾L y.

The last exercise therefore establishes the equivalence of
convergence in probability and convergence in law
(distribution) in the case of convergence to a constant.
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The mean of a sample x1,…,xn from an AR(1) process

(xt-m)=f(xt-1-m)+ut

with mean m, AR-parameter f satisfying f <1, innovations
ut with variance s 2>0, and autocovariances

g (k)=E(xt-m)(xt+k-m)= 21

2

f

sf

-

k

is a consistent estimator of m.

We establish (weak) consistency1 by using the fact that
mean square convergence implies convergence in
probability.
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1 For strong consistency, almost sure convergence is required rather
than convergence in probability.
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Now assume that m=0 and the innovations ut are an i.i.d.
sequence of N(0,s2 ) random variables.

Exercise:  Show that Eujukulum £ E 4
ju  = 3s4.

Solution: j¹k,l,m: Eujukulum =EujEukulum = 0
j=k¹l=m: Eujukulum = E 2

ju E 2
lu =s2s2 =s 4

j=k=l=m: Eujukulum = E 4
ju =3s 4

Exercise:  Show that E 4
tx < ¥.

Hint:  Use the MA(¥) representation
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Rewriting the MA(¥) representation of the AR(1) process

xt=fxt-1+ut
as

xt = å
¥
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j
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where y j =f j for j³0 and y j=0 for j<0, we obtain
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Lemma:

E xsxs+hxtxt+h  = g (h)2+g (t-s)2+g (t-s+h)g (t-s-h)

Proof:
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Exercise:  Show that for any sequence w-(n-1),…,wn-1,
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If it is known that m=0, the simplified sample covariance
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Note that |f |½k+h½+½k-h½ £ |f |2k = f 2k, because

½k+h½+½k-h½≥½(k+h)+(k-h)½=½2k½=2k. 2V

Remark: We have shown above that the first and second
sample moments of a Gaussian AR(1) process converge in
probability to their theoretical counterparts. Such a process
is said to be ergodic for the first and second moments.
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The OLS-estimator of the parameter f is given by
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The random variables
=

satisfy
Ezt=Eutxt-1=EutExt-1=0

and
E ,...),( 21 -- ttt zzz =E )( 32211 ,...x,uxuxu tttttt -----

                               =Eut ,...)( 32211 ----- ttttt x,uxuxE =0,

because ut is independent of xt-1 and ut-1xt-2, ut-2xt-3,…

Thus, the sequence of random variables zt is a martingale
difference sequence2. 2O

2 In contrast, for a martingale sequence it is required that
| | < ∞, ( | , , … ) = .

Exercise:  Show that the sequence of random variables zt
is white noise.

2W

Exercise:  Show that the sequence of random variables
2

1
22

--= ttt )xσ(uw
is a martingale difference sequence. 2D

Exercise:  Show that the sequence of random variables wt
is white noise.

2N

Remark:  Since the random variables ut are Gaussian, the
sequences of random variables zt and wt, respectively, are
not only weakly stationary but also strictly stationary,
which means that the joint distribution of any finite
subsequence of random variables with indices t1,…,tk is
the same as that of the random variables with indices
t1+t,…,tk+t.
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Weak laws of large numbers state conditions under which
the sample mean converges in probability towards the
population mean. The weak law of large numbers for
strictly stationary martingale difference sequences et
requires only absolute integrability.
Thus,
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The central limit theorem for martingale difference
sequences states that
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Now it is straightforward to derive the asymptotic distribution
of the OLS-estimator f̂ .

The numerator of the statistic
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