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The linear regression model  
 

Let  
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be an n-dimensional random vector with mean vector 
µ=Ey and covariance matrix ∑=var(y). 
 

For the standard linear model, we assume that  
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where the k columns of the matrix X (the k regressors) 
are linearly independent. 



 

 

 

2 

Likelihood function of the linear model  
 

If y=(y1,…,yk)
T has a multivariate normal distribution 

with a diagonal covariance matrix, the multivariate 
normal density f(y1,…,yk) factors into n univariate 
normal densities: 
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Under the assumptions Ey=Xβ and var(y)=σ2I of the 
linear model we have  
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This density is a function of y1,…,yk with fixed model 
parameters β1,…,βk, and σ2. When we want to stress the 
dependence of the density on the model parameters, we  
write f(y1,…,yk;β1,…,βk,σ2) instead of f(y1,…,yk). 
Viewing f(y1,…,yk;β1,…,βk,σ2) as a function of β1,…,βk, 
and σ2 with y1,…,yk fixed, we obtain the likelihood 
function of the linear model: 
 

L(β1,…,βk,σ2;y1,…,yk)= f(y1,…,yk;β1,…,βk,σ2)  
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ML estimators for the model parameters 
 

The maximum likelihood (ML) estimators for the model 
parameters are obtained by maximizing the likelihood 
function or equivalently the log likelihood function  
 

   log L(β1,…,βk,σ2;y1,…,yk) 

                = -2
n log(2πσ2)- 22

1
σ
∑
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ty( -β1xt1-…-βkxtk)

2. 
   

Setting the partial derivatives of the log likelihood with 
respect to β1,…,βk, and σ2 to zero gives 
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which is equivalent to 
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σ
(y-Xβ)T(y-Xβ)=0 

  

and also to 

XT(y-Xβ)=0, -nσ2+(y-Xβ)T(y-Xβ)=0 

and finally also to 

XTy=XTXβ, (y-Xβ)T(y-Xβ)=nσ2. 

Thus 

β̂=( 1β̂ ,…, kβ̂ )T=(XTX)-1XTy, 2σ̂ =n
1 (y-X β̂)T(y-X β̂). 
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Geometrical interpretation 
 

X β̂=X(XTX)-1XTy is the projection of y onto the 
subspace of n spanned by the columns x1,…,xk of X 
because   
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is an element of span(x1,…,xk) and  
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which implies that y-Xβ̂ is an element of the 
orthogonal complement of span(x1,…,xk). 
 

Analogously, y-Xβ̂=(I-X(X TX)-1XT)y is the projection of 
y onto the orthogonal complement of span(x1,…,xk) 
because 

y-X β̂∈(span(x1,…,xk))
⊥ 

and 
 

y-(y-X β̂)=Xβ̂∈span(x1,…,xk)=((span(x1,…,xk))
⊥)⊥. 

 

Exercise: Show that the matrices  
 

PX=X(XTX)-1XT, ⊥X
P =I-X(X TX)-1XT 

 

are symmetric and idempotent. 
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Expected values of the ML estimators 
 

β̂=(XTX)-1XTy is an unbiased estimator for β because 

Eβ̂=(XTX)-1XTEy=(XTX)-1XTXβ=β. 
 

Furthermore, using  

E ⊥X
P y=E(y-Xβ̂)=Ey-EXβ̂=Xβ-XEβ̂=Xβ-Xβ=0 

we obtain 
 

  E(y-Xβ̂)T(y-X β̂)=E( ⊥X
P y)T( ⊥X
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P y)T
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Thus 
 

E 2σ̂ =En
1 (y-X β̂)T(y-X β̂)= n

kn− σ2. 
 

Exercise: Show that 

Cov(Xβ̂,y-Xβ̂)=0. 
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The final prediction error criterion 
 

Let y and z be independent and identically distributed 
(i.i.d.) normal random vectors with mean vector Xβ and 
covariance matrix σ2I. 
 

Using the ML estimate β̂=(XTX)-1XTy obtained from y 
we may predict z by Xβ̂. It follows from 
 

  2σ2I=Var(z)+Var(y)=Var(z-y)=Var((z-Xβ̂)-(y-X β̂)) 

=Var(z-Xβ̂)-2Cov(z-Xβ̂,y-Xβ̂)+Var(y-Xβ̂)  
=Var(z-Xβ̂)-2Cov(z,y-Xβ̂)+2Cov(Xβ̂,y-Xβ̂)+Var(y-Xβ̂)  
=Var(z-Xβ̂)+Var(y-Xβ̂)  
=E(z-Xβ̂)(z-Xβ̂)T+E(y-Xβ̂)(y-X β̂)T  

that 

   2nσ2 =tr(2σ2I)=E tr(z-Xβ̂)(z-Xβ̂)T
 + E tr(y-X β̂)(y-X β̂)T  

=E tr(z-Xβ̂)T(z-Xβ̂) + E tr(y-X β̂)T(y-X β̂)  
=E(z-Xβ̂)T(z-Xβ̂)+E(y-Xβ̂)T(y-X β̂)  
=E(z-Xβ̂)T(z-Xβ̂)+(n-k)σ2.   

Thus, the mean squared prediction error is given by   

n
1E(z-Xβ̂)T(z-Xβ̂)= n

kn+ σ2 

and an unbiased estimator for it is 

FPE(k)= n
kn+

kn
n
−

2σ̂ = kn
kn

−
+ 2σ̂ =(1+ kn

k2
− ) 2σ̂ . 
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The corrected AIC 
 

Let y and z be i.i.d. N(Xβ,σ2I) and 
 

β̂=(XTX)-1XTy, 2σ̂ =n
1 (y-X β̂)T(y-X β̂).  

 

A measure that is somehow related to the mean squared 
prediction error is 
  

E(-2 log f(z;β̂, 2σ̂ ))=E(n log(2π)+n log 2σ̂ + 2
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ˆ

)ˆXz()ˆXz(

σ
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Here f(z;β̂, 2σ̂ ) is viewed as a function of z, β̂, and 2σ̂ . 
Clearly, the naïve estimator   
 

-2 log f(y;β̂, 2σ̂ ) 
 

underestimates E(-2 log f(z;β̂, 2σ̂ )). It follows from 
 

     E[-2 log f(z;β̂, 2σ̂ )] - E[-2 log f(y;β̂, 2σ̂ )] 

        = E 2
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that  

AICC(k)=-2 log f(y; β̂, 2σ̂ )+2(k+1)+ 2kn
4k6k2 2

−−
++  

   

is an unbiased estimator for E[-2 log f(z;β̂, 2σ̂ )]. 
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Exercise: Check each step in the derivation of AICC. 
You may use the following facts: 
 

(i) The statistics β̂ and 2σ̂  are independent. 

(ii) β̂~N(β,σ2(XTX)-1), n 2σ̂ /σ2~χ2(n-k) 
(iii) X~ χ2(j) ⇒ EX

1 = 2j
1
−  

 

Up to now we have never questioned the assumption that 
the design matrix X containing the regressors is given. In 
practice, we rarely know a priori which regressors should 
be included in a regression model and must therefore 
select the design matrix from a set of candidate matrices. 
A possible strategy is to select that n×k matrix which 
minimizes FPE(k) or AICC(k).  
 

While 2σ̂  can only decrease if additional variables are 
included, the terms  

1+ kn
k2

−  

and  

2(k+1)+ 2kn
4k6k2 2

−−
++  

   

occurring in FPE(k) and AICC(k), respectively, increase 
as the number of regressors k increases and therefore 
serve as penalty terms to prevent overparametrization.  

   

An apparent flaw of this model selection approach is 
that FPE(k) and AICC(k) have been derived under the 
assumption that the mean of y can be written as a 
linear combination of the columns of X. Why should  
all candidate matrices satisfy this assumption?  
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At second glance, model selection with FPE(k) or 
AICC(k) is not so absurd after all, because the chances 
of selecting a too small (misspecified) model 
disappear as n increases. So the real challenge is to 
avoid choosing a too large model. But FPE(k) and 
AICC(k) are particularly suitable for comparing the 
correct model with larger models, because all of these 
models are correctly specified.  
  
Exercise: Show that the minimization of  
 

AICC(k)=-2 log f(y; β̂, 2σ̂ )+2(k+1)+ 2kn
4k6k2 2

−−
++  

 

is equivalent to the minimization of 
 

n log 2σ̂ +2(k+1)+ 2kn
4k6k2 2

−−
++ . 

 
If we ignore the last term occurring in AICC(k), which 
vanishes as n increases, we obtain  
 

  AIC(k) =-2 log f(y; β̂, 2σ̂ )+2(k+1). 
 

Here the penalty term is just two times the number of 
model parameters. (The parameters in the linear 
regression model are β1,…,βk, and σ2.)  
 
Exercise: Show that the minimization of  
 

FPE(k)=(1+ kn
k2

− ) 2σ̂  
 

is roughly equivalent to the minimization of AIC(k). 
 

Hint: log(1+ε)≈ε     
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We might expect that  
 

AIC(k)=-2 log f(y; β̂, 2σ̂ )+2(k+1)  
 

which has been derived as an asymptotically unbiased 
estimator for  

E[-2 log f(z;β̂, 2σ̂ )] 
 

in the framework of the linear regression model 
 

yt=β1xt1+…+βkxtk+ut, 
 

can also be used when y=(y1,…,yn)
T comes from a 

Gaussian AR(p) model 
 

yt=φ1yt-1+…+φpyt-p+ut  
 

with parameters φ1,…,φp, and σ2=var(ut).   
  

Indeed, if φ̂=( 1φ̂ ,…, pφ̂ )T and 
2σ̂  are the ML estimators 

for the model parameters and z=(z1,…,zn)
T is an 

independent series from the same AR(p) model, then 
      

AIC(p)=-2 log f(y; φ̂ , 2σ̂ )+2(p+1)  
 

is an approximately unbiased estimator for  
 

E[-2 log f(z;φ̂ , 2σ̂ )]. 
 

Analogously, in the case of an ARMA(p,q) model 
 

yt=φ1yt-1+…+φpyt-p+ut+θ1ut-1+…+θqut-q 
 

we may use  
 

AIC(p,q)=-2 log f(y; φ̂ ,θ̂ , 2σ̂ )+2(p+q+1). 
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The likelihood function for an AR(1) model 
 

Suppose that y=(y1,…,yn)
T comes from a Gaussian 

AR(1) model represented by 
 

yt=φyt-1+ut  
  

 or, equivalently, by 
 

 yt=φ(φyt-2+ut-1)+ut=φ(φ(φyt-3+ut-2)+ut-1)+ut=…=∑
∞

=
φ

0j

j ut-j 

 

where φ <1 and the errors ut are i.i.d. N(0,σ2). Then 
 

Eyt=∑
∞

=
φ

0j

j Eut-j=0 

and for h≥0 
 

 γ(h)=cov(yt,yt-h)=Eytyt-h 
=E(ut+φut-1+φ2ut-2+...)(ut-h+φut-h-1+φ2ut-h-2+...) 

=σ2(φhφ0+φh+1φ1+φh+2φ2+...)=σ2φh∑
∞

=
φ

0j

j2)( = 2

2

1
σ

φ−
φh. 

 

The ML estimates are obtained by finding the values 
of φ and σ2 which maximize 

f(y1,…,yn;φ,σ2)=(2π 2
n

)
−

2
1

)(det
−Γ exp( yy 1T

2
1 −Γ− ), 

 

where Γ=EyyT depends on φ and σ2. 
 

This maximization problem can only be solved 
numerically but not analytically.  
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Exercise: Show that 
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Exercise: Show that Γ-1=LTL, where 
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Exercise: Show that det Γ= 2

2n

1 φ−
σ . 
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The conditional likelihood function 
 

The joint density of a sample y=(y1,…,yn)
T from a 

Gaussian AR(1) model represented by 
 

yt=φyt-1+ut 
 

can be written as   
 

  f(y1,…,yn)=f(yn|y1,…,yn-1)f(y1,…,yn-1) 
                  =f(yn|y1,…,yn-1)f(yn-1|y1,…,yn-2)f(y1,…,yn-2) 
                  M 
                  =f(yn|y1,…,yn-1)…f(y2|y1)f(y1). 
 
If ut~N(0,σ2), yt-1 is fixed, and yt=φyt-1+ut, then  
 

yt~N(φyt-1,σ2). 
 

Thus, 
 

           f(yt|y1,…,yt-1)=f(yt|yt-1) 

                                 = 2
1

)2( 2 −
πσ exp(- 22

1
σ

(yt−φyt-1)
2) 

and 
 

       f(yn,…,y2|y1)=f(yn|y1,…,yn-1)…f(y2|y1) 
                            =f(yn|yn-1)…f(y2|y1) 

                            = 2
1n

)2( 2
−−

πσ exp(− 22
1
σ
∑
=

n

2t
ty( −φyt-1)

2). 
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Exercise: Show that maximizing  
 

log f(yn,…,y2|y1)=− 2
1n− log(2πσ2)− 22

1
σ
∑
=

n

2t
ty( −φyt-1)

2  
 

gives the ordinary least squares (OLS) estimate  
 

∑

∑

=
−

=
−

=φ n

2t

2
1t

n

2t
1tt

y

yy)
. 

 
 
Multiplying the conditional likelihood function by 
f(y1) we obtain the full likelihood function, i.e., 
 

f(y1,…,yn)=f(yn,…,y2|y1)f(y1). 
 

It follows from Var(y1)= 2

2

1 φ−
σ  that  

 

f(y1)=(2π 2

2

1 φ−
σ 2

1

)
−

exp(− 2

2

2

1

σ
φ− 2

1y ). 

 
 
 
 


