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Abstract
Widely used declarative approaches to generation in which 
generation speed is a function of grammar size are not optimal 
for real-time dialog systems. We argue that a procedural 
system like the one we present is potentially more efficient for 
time-critical real-world generation applications as it provides 
fine-grained control of each processing step on the way from 
input to output representations. In this way the procedural 
behaviour of the generator can be tailored to the task at hand. 
During the generation process, the realizer generates flat deep 
structures from semantic-pragmatic expressions, then syntactic 
deep structures from the deep semantic-pragmatic structures 
and from these syntactic deep structures surface strings. Nine 
different generation levels can be distinguished and are 
described in the paper. 

1. Introduction 
A major challenge for spoken dialog systems is the design of 
the system’s natural language generation (NLG) module. This 
challenge arises from the fact that the generator needs to be 
sensitive and adjustable to many features of the dialog 
domain, user groups and dialog context [1]. Designers of NLG 
systems must normally consider the trade-off between the 
quality of text and the speed of realization. Turning to the 
unique needs of dialog systems, the generation speed is a 
central issue since interaction must occur in real-time. As has 
been pointed out in the literature [2], natural language 
realization systems can address this constraint in two ways: 
either the system designer must anticipate and specify all 
possible natural language outputs before runtime and supply 
the necessary program logic to produce the correct output at 
the correct time and hope that problems will never arise, or the 
system must be able to dynamically generate natural language 
outputs in real time. 

There are a number of reasons why dynamic generation is 
to be preferred over simpler methods of text realization such 
as canned text and/or templates, on which the generation 
component of most dialog systems is based. While canned 
text systems are trivial to create, they are by their very nature 
inflexible (leading to user frustration and ultimately rejection) 
and wasteful on resources. Similarly, output produced by 
template-based generators lacks the variability and robustness 
so crucially needed by conversational systems. The ability to 
provide customized responses to users as well as issues 
hinging on the desirability of software reusability across 
applications are then obvious advantages of dynamic 
generation.

In the context of dialog systems, existing generators are 
either too slow (e.g. Penman [3], FUF/SURGE [4], [5]) since 
their approaches traverse the entire generation grammar rather 
than the input to be generated; or their grammar is too limited 
(e.g. TEXT [6]) leading to customization and portability 

proble
system
applic
results
emplo
ungra
realiza
(e.g. Y

In
Gener
genera
genera

 M
Decla
generi
specif
genera
SAG 
proced
which
outpu
certain
condit
of a s
to tra
provid
way f
is po
applic
be tai
system
applic

In SA
pragm
statem
seman
that c
eleme
called
(SSRL
their p
of the
senten
Figure
after 
execu

         
1 Tho
Labs 
other 
interfa
rator for Dialog Systems

 

B, A-1040 Vienna, Austria 
hnology.com

ms; or realization is implemented as a production 
 (e.g. TG/2 [7], [8]) which is not suitable for real-time 

ations because of the inherently inefficient derivation of 
 in such systems; or realization is handled by 
ying statistical approaches which may provide 
mmatical results (e.g. Nitrogen [9], [10], [11]); or the 
tion system implements a template-based approach 
AG [1]) which again compromises quality of output. 

 this paper we describe SAG (Sail Labs Answer 
ator). SAG is a real-time, multilingual, general-purpose 
tion system that enables the use of dynamically 
ted natural language for dialog applications.1
ost existing approaches to realization are declarative. 

rative here means that the generation system defines a 
c algorithm that controls how the input and grammar 
ications are combined to yield the output of the 
tion process which can then be linearized into text. 
differs from existing generators in that it employs a 
ural approach. In contrast to declarative approaches, 

 define a set of conditions that have to hold in the 
ts and rely on a generic algorithm to verify whether a 
 input matches to a structure that fulfills these 
ions, a procedural approach allows for the specification 
equence of procedures from a set that should be applied 
nsfer inputs into outputs. The procedural approach 
es fine-grained control of each processing step on the 

rom input to output representations. We argue that this 
tentially more efficient for specific generation 
ations as the procedural behaviour of the generator can 
lored to the task at hand and that therefore a procedural 

 like SAG is better suited for time-critical real-world 
ations.

2. SAG Component Overview 
G, the tactical generation starts from semantic-

atic representations, which consist of a set of 
ents (predicates and meta-predicates) containing 
tic, syntactic, pragmatic and morphological information 
onstitutes the content of the text to be generated. The 
nts of the representations are expressions in the so-
 Simple Semantic-pragmatic Representation Language 
). SSRL describes event and entity nodes of a network, 
roperties, and links among them [12], [13]. An example 
 SSRL sequence that would ultimately generate the 
ce “Do you want me to read the menu?” is provided in 
 1. Figure 2 illustrates the resulting syntactic structure 
all Lingware procedures (see section 3) have been 
ted. The output text is given in Figure 3. 

                                                 
ugh SAG was primarily designed for use within the Sail 
Conversational System, it has also been employed for 

real-time applications such as natural language 
ces to databases. 



(state "x1" "want") 
(experiencer "x2" "x1" "x3") 
(hearer "x14" "x3" "you") 
(action "x5" "read")
(agent "x8" "x5" "x6") 
(entity "x6" "i") 
(object "x7" "x5" "x16") 
(entity "x16" "menu") 
(tense "x1" pr) 
(number "x16" sg) 
(defness "x16" def) 
(sentence-type "x1" main) 
(sentence-type "x5" infin)
(smood "x1" qyn) 

Figure 1: SSRL sequence 

Figure 2: Resulting syntactic structure

“Do you want me to read the menu?”

Figure 3: Text output

The SSRL statements are created by a text-planning process,
the strategic component, which generates the so-called 
“WHAT” [6]. SSRL statements serve as an interface between 
strategic and tactical generation. 

The tactical generator uses a programming environment
developed at Sail Labs, which uses a Lingware intepreter 
written, for efficiency reasons, in C++. Lingware is the 
programming language used to write the generation grammar. 
It provides a set of LISP and built-on-LISP functions, which 
represent linguistic operators for natural language processing. 
In what follows, program parts of the generation grammar are 
called (Lingware) procedures. 

Each expression of the representation language has a
corresponding Lingware procedure with the same name. 
Thus, the names of the SSRL expressions simultaneously
stand for representation language units and program parts of
the tactical generator.

The sequences of SSRL statements are prompted by
actions specified by the dialog manager. Specific SSRL
statements, in turn, are applied by calling the corresponding 
homonymous procedures. 
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e tactical natural language text generation consists in
g deep and surface tree descriptions as well as
ologically well-formed sequences of text units. The

tructures are generated in a number of steps by well-
d sequences of Lingware procedures, which represent
plemented linguistic grammar. 
dictionary-free flexing algorithm (‘flexer’) is applied for 
ological generation. This component is also integrated 
e tactical component. 

3. Generation Process
rocedural rules of the described system use feature
res and unification of feature structures to determine
plicability of both phrase structure rules and feature 

tiations.
e tactical generation proceeds from an initial tree 
re and the sequence of SSRL statements (i.e. the input
nerated by the strategic component). 
e initial tree is defined as a double branching structure 
root (named S as a symbol for sentence) and two (text-

ing sons, symbolized by $, that is, (S  $  $). 
e respective sequence of SSRL statements is generated 
receding strategic component, which is an intermediate
nent between the dialog manager and the tactical
tion. The dialog management component pre-defines

lans the extension of system utterances and sends them 
 text modelling component (the strategic component), 
 in turn supplements the elementary information
ed by the dialog manager and determines the final 

nce of SSRL statements. This sequence constitutes the 
for the tactical generation. 
 terms of meaningful units of the representation, the 
nt SSRL statements correspond to functions and
m parts of the text generator. These functions initiate 
neration process. The names of the representation units
e Lingware functions are identical: an SSRL statement
t of the representation at the same time represents a
ic part of the generation Lingware which is called up by
edure bearing a name which is identical to that of the
 statement. For instance, an SSRL statement (action x1 
”) calls the Lingware procedure (action x1 “start”),
action is the name of the called sub-program and x1

start” are the arguments of the procedure.1
ngware procedures matching the SSRL statements
m the first step of the generation process: they insert 
odes into a flat tree structure and assign additional 
ation to these nodes. Thus, the first step of the tactical
tion consists in creating a basic tree structure with 
ted nodes corresponding to the current SSRL sequence. 
hen the complete sequence of SSRL statements is
sted, that is, when all respective Lingware procedures
alled and executed, a flat semantic-pragmatic tree
enting the utterance to be realized has been generated.
odes of the tree contain elementary feature value pairs.
consist of linguistic functions and relational indicators. 
rther procedures are called on the subsequent
tion layers in a well-defined order. They build the

 action procedure makes sure that a node is inserted into 
e structure and puts pointers, features and values onto
de in compliance with its parameters – here, the pointer 

x1 and the notion “start”.



structural description by starting from the deep semantic-
pragmatic tree up to creating a surface-structure tree. Finally, 
a separate morphologic generation component is called in 
order to generate morphologically well-formed strings.  

To sum up, during the generation process, the realizer 
generates flat deep structures from semantic-pragmatic 
expressions, then syntactic deep structures from the deep 
semantic-pragmatic structures, and from these syntactic deep 
structures surface strings. With a view to the internal process, 
the following steps can be distinguished. 

The first part converts semantic-pragmatic expressions 
into a flat deep tree structure and is totally language 
independent.

The second part converts the semantic-pragmatic tree 
into a deep syntactic tree, which is still language 
independent.

The third part converts the deep, language independent 
syntactic structure into a language dependent surface 
structure, and then from here into a well-formed text 
sequence of inflected words. 

Thus, the most important and general type of operation 
performed by the text generation is to convert or transform 
tree structures. For this purpose the following means are 
employed. 

A pre-defined inventory of operators delivered by the 
used Lingware. 

In particular, the transformation formalism (the xfm
operator) of the Lingware. 

The definition of elementary and specific Lingware 
procedures which insert sub-trees into already generated 
trees or modify them. (This method is comparable to the 
procedure of Tree Adjoining Grammars (TAGs) [14], 
[15].) 

The sub-tree context is defined by node decorations. 

Transformations are defined by context conditions that 
are composed by structure descriptions and node 
decorations.

4. Generation Levels 
The initial generation call g, which has as parameter a 
sequence of SSRL statements, calls the procedure generate
which has as parameter the SSRL (input) file. The procedure 
generate reads this SSRL file and calls up xfm, a Lingware 
operator with two arguments (description of the input tree 
structure and transformed output structure, respectively), 
which creates the initial tree structure and/or resets former 
result trees.

After creating the initial tree, generate calls up step-by-
step the procedures described below which carry out the 
generation. The following generation levels are distinguished. 

Generation level 1: Generating a semantic-pragmatic 
deep structure. In order to complete the initial tree   (i.e. 
S  $ $), each statement of the respective SSRL-
sequence representation is evaluated. The result of this 
evaluation is a flat semantic-pragmatic tree. The 
evaluation itself is performed by the function evals,
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eneration level 2: Assigning syntactic functions and 
ategories. Three procedures, put-syn-func, insert-syn-
at, aux-insert, insert elementary syntactic information 
nto the tree structure and onto the tree nodes. These 
rocedures have no parameters. 

eneration level 3: Application of elementary 
perations. After evaluating the deep input tree, 
lementary operations such as sub-tree insertion and 
anipulation (for instance, identification of 

oordinations, attributes and relations) are applied. The 
espective procedures are: logicizer, attributor and 
elator. They do not have parameters. 

eneration level 4: Accessing lexical and/or language 
pecific information. After evaluating the 
otions/concepts supplied by the strategic component, 
otions/concepts are replaced with canonical forms 
hrough access to the lexicon. The lexicon access allows 
he application of multilingual facilities. The respective 
unctions that perform lexicon access are get-prep-can
nd get-lex-info. They do not have parameters. 

eneration level 5: Evaluation of the deep-structure tree. 
his level generates syntactic structures (oriented 

owards interface structures) and takes care of gapping 
henomena and insertions as language specific parts, as 
ell as ordering of sub-clausal structures. The respective 

unctions are: internal-cls-structure, insert-specific-
tructure, del-ident-phrase and cls-order. These 
unctions do not have parameters. 

eneration level 6: Structure type realization and 
xpansion. This level takes care of the insertion and/or 
ransformation of pre-defined structures, determiner 
nsertion as well as ordering of NP and AP sub-
tructures. The respective functions are struct-expansion,
et-insert, np-order and ap-order. They do not have 
arameters.

eneration level 7: Morphologic generation. At this 
evel, the call to the morphological generation 
omponent (the ‘flexer’ tool) is performed. The 
espective function get-inflected-form does not have 
arameters.

eneration level 8: Final refinement. At this level, 
honetic refinement, pretty print and cleaning operations 
f the tree and the node decorations are carried out. The 
espective functions corr-onset, mult-coord and clean-
odes do not have parameters. 

eneration level 9: Output functions. This level provides 
 graphic representation of the final tree structure and 
utput of the text string. The respective functions draw
nd allostr do not take any parameters. 

5. Discussion 
ted earlier, we see the main strength of the described 
ach in the flexibility it provides to developers for 
ling and tuning the generation process. Often there is 



more than a single way to accommodate a particular linguistic 
phenomenon, and as developers we need to make a design 
choice on which option to choose in the current context, 
which comprises all covered constructions of the generation 
task at hand. To illustrate, the phenomenon of auxiliary 
insertion as in English can be treated as a language specific 
rule, or as a parametrized application of a language 
independent principle. If the first option were selected, 
auxiliary insertion could be handled by a procedure at SAG’s 
generation level 5 (more specifically, the insert-specific-
structure procedure). If the second option is preferred, then a 
procedure aux-insert can be used on generation level 2, as 
indeed is the case in SAG. The choice made will have 
different ramifications for the solutions available for many 
other grammar phenomena that interact with auxiliary 
placement. 

Such design choices are also familiar from declarative 
generation systems of realistic complexity, however in these 
systems they only exist on top and outside of the generation 
engine, which alone essentially determines the runtime 
behavior. This leads back to the general issue of advantages 
and disadvantages of declarative approaches in natural 
language processing, which we do not want to discuss here in 
detail. For our present purpose of providing a generation 
component operating under real-time constraints in a spoken 
dialog system, we have concluded that the additional control 
over procedural aspects provided by SAG outweighs the 
benefits of more restrictive declarative generation 
architectures in the literature. 

We use SAG to build generators for multiple specific 
applications in a number of languages. We have lingustic 
expertise available to address this task. Yet, while we aim to 
observe generality in the range of developed generation 
solutions, the fine-grained procedural control has proved 
valuable in solving persistent problems such as over- and 
undergeneration, as for example in the case of resultatives in 
English and other languages, where the default sequence of 
adjective preceding head noun is reversed. 

An important topic of ongoing work is a detailed 
comparison of resource requirements, real-time 
characteristics, and output quality across a number of 
different generation architectures. Unfortunately, by the 
nature of the generation task, such a comparison is rather 
intricate, as frequently mentioned in the literature [16]. 

6. Conclusions 
We have described SAG, a procedural realization system for 
real-time applications. The procedural approach provides 
fine-grained control over the generation process on a 
sequence of nine different generation levels. Developers can 
therefore tune the system for a specific application depending 
on the observed runtime behaviour and the required range of 
natural language system outputs. 
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