
SAG: A Procedural Tactical Gene

Dalina Kallulli

SAIL LABS Technology, Operngasse 20
dalina.kallulli@sail-tec

Abstract
Widely used declarative approaches to generation in which
generation speed is a function of grammar size are not optimal
for real-time dialog systems. We argue that a procedural
system like the one we present is potentially more efficient for
time-critical real-world generation applications as it provides
fine-grained control of each processing step on the way from
input to output representations. In this way the procedural
behaviour of the generator can be tailored to the task at hand.
During the generation process, the realizer generates flat deep
structures from semantic-pragmatic expressions, then syntactic
deep structures from the deep semantic-pragmatic structures
and from these syntactic deep structures surface strings. Nine
different generation levels can be distinguished and are
described in the paper.

1. Introduction
A major challenge for spoken dialog systems is the design of
the system’s natural language generation (NLG) module. This
challenge arises from the fact that the generator needs to be
sensitive and adjustable to many features of the dialog
domain, user groups and dialog context [1]. Designers of NLG
systems must normally consider the trade-off between the
quality of text and the speed of realization. Turning to the
unique needs of dialog systems, the generation speed is a
central issue since interaction must occur in real-time. As has
been pointed out in the literature [2], natural language
realization systems can address this constraint in two ways:
either the system designer must anticipate and specify all
possible natural language outputs before runtime and supply
the necessary program logic to produce the correct output at
the correct time and hope that problems will never arise, or the
system must be able to dynamically generate natural language
outputs in real time.

There are a number of reasons why dynamic generation is
to be preferred over simpler methods of text realization such
as canned text and/or templates, on which the generation
component of most dialog systems is based. While canned
text systems are trivial to create, they are by their very nature
inflexible (leading to user frustration and ultimately rejection)
and wasteful on resources. Similarly, output produced by
template-based generators lacks the variability and robustness
so crucially needed by conversational systems. The ability to
provide customized responses to users as well as issues
hinging on the desirability of software reusability across
applications are then obvious advantages of dynamic
generation.

In the context of dialog systems, existing generators are
either too slow (e.g. Penman [3], FUF/SURGE [4], [5]) since
their approaches traverse the entire generation grammar rather
than the input to be generated; or their grammar is too limited
(e.g. TEXT [6]) leading to customization and portability

proble
system
applic
results
emplo
ungra
realiza
(e.g. Y

In
Gener
genera
genera

 M
Decla
generi
specif
genera
SAG
proced
which
outpu
certain
condit
of a s
to tra
provid
way f
is po
applic
be tai
system
applic

In SA
pragm
statem
seman
that c
eleme
called
(SSRL
their p
of the
senten
Figure
after
execu

1 Tho
Labs
other
interfa
rator for Dialog Systems

B, A-1040 Vienna, Austria
hnology.com

ms; or realization is implemented as a production
 (e.g. TG/2 [7], [8]) which is not suitable for real-time

ations because of the inherently inefficient derivation of
 in such systems; or realization is handled by
ying statistical approaches which may provide
mmatical results (e.g. Nitrogen [9], [10], [11]); or the
tion system implements a template-based approach
AG [1]) which again compromises quality of output.

 this paper we describe SAG (Sail Labs Answer
ator). SAG is a real-time, multilingual, general-purpose
tion system that enables the use of dynamically
ted natural language for dialog applications.1
ost existing approaches to realization are declarative.

rative here means that the generation system defines a
c algorithm that controls how the input and grammar
ications are combined to yield the output of the
tion process which can then be linearized into text.
differs from existing generators in that it employs a
ural approach. In contrast to declarative approaches,

 define a set of conditions that have to hold in the
ts and rely on a generic algorithm to verify whether a
 input matches to a structure that fulfills these
ions, a procedural approach allows for the specification
equence of procedures from a set that should be applied
nsfer inputs into outputs. The procedural approach
es fine-grained control of each processing step on the

rom input to output representations. We argue that this
tentially more efficient for specific generation
ations as the procedural behaviour of the generator can
lored to the task at hand and that therefore a procedural

 like SAG is better suited for time-critical real-world
ations.

2. SAG Component Overview
G, the tactical generation starts from semantic-

atic representations, which consist of a set of
ents (predicates and meta-predicates) containing
tic, syntactic, pragmatic and morphological information
onstitutes the content of the text to be generated. The
nts of the representations are expressions in the so-
 Simple Semantic-pragmatic Representation Language
). SSRL describes event and entity nodes of a network,
roperties, and links among them [12], [13]. An example
 SSRL sequence that would ultimately generate the
ce “Do you want me to read the menu?” is provided in
 1. Figure 2 illustrates the resulting syntactic structure
all Lingware procedures (see section 3) have been
ted. The output text is given in Figure 3.

ugh SAG was primarily designed for use within the Sail
Conversational System, it has also been employed for

real-time applications such as natural language
ces to databases.

(state "x1" "want")
(experiencer "x2" "x1" "x3")
(hearer "x14" "x3" "you")
(action "x5" "read")
(agent "x8" "x5" "x6")
(entity "x6" "i")
(object "x7" "x5" "x16")
(entity "x16" "menu")
(tense "x1" pr)
(number "x16" sg)
(defness "x16" def)
(sentence-type "x1" main)
(sentence-type "x5" infin)
(smood "x1" qyn)

Figure 1: SSRL sequence

Figure 2: Resulting syntactic structure

“Do you want me to read the menu?”

Figure 3: Text output

The SSRL statements are created by a text-planning process,
the strategic component, which generates the so-called
“WHAT” [6]. SSRL statements serve as an interface between
strategic and tactical generation.

The tactical generator uses a programming environment
developed at Sail Labs, which uses a Lingware intepreter
written, for efficiency reasons, in C++. Lingware is the
programming language used to write the generation grammar.
It provides a set of LISP and built-on-LISP functions, which
represent linguistic operators for natural language processing.
In what follows, program parts of the generation grammar are
called (Lingware) procedures.

Each expression of the representation language has a
corresponding Lingware procedure with the same name.
Thus, the names of the SSRL expressions simultaneously
stand for representation language units and program parts of
the tactical generator.

The sequences of SSRL statements are prompted by
actions specified by the dialog manager. Specific SSRL
statements, in turn, are applied by calling the corresponding
homonymous procedures.

Th
creatin
morph
tree s
define
the im

A
morph
into th

The p
structu
the ap
instan

Th
structu
file ge

Th
with a
) limit

Th
by a p
compo
genera
and p
to the
which
provid
seque
basis

In
differe
progra
the ge
and th
as par
specif
a proc
SSRL
“start
where
and “

Li
perfor
new n
inform
genera
decora

W
exhau
are c
repres
The n
They

Fu
genera

1 This
the tre
the no
ev-id
e tactical natural language text generation consists in
g deep and surface tree descriptions as well as
ologically well-formed sequences of text units. The

tructures are generated in a number of steps by well-
d sequences of Lingware procedures, which represent
plemented linguistic grammar.
dictionary-free flexing algorithm (‘flexer’) is applied for
ological generation. This component is also integrated
e tactical component.

3. Generation Process
rocedural rules of the described system use feature
res and unification of feature structures to determine
plicability of both phrase structure rules and feature

tiations.
e tactical generation proceeds from an initial tree
re and the sequence of SSRL statements (i.e. the input
nerated by the strategic component).
e initial tree is defined as a double branching structure
root (named S as a symbol for sentence) and two (text-

ing sons, symbolized by $, that is, (S $ $).
e respective sequence of SSRL statements is generated
receding strategic component, which is an intermediate
nent between the dialog manager and the tactical
tion. The dialog management component pre-defines

lans the extension of system utterances and sends them
 text modelling component (the strategic component),
 in turn supplements the elementary information
ed by the dialog manager and determines the final

nce of SSRL statements. This sequence constitutes the
for the tactical generation.
 terms of meaningful units of the representation, the
nt SSRL statements correspond to functions and
m parts of the text generator. These functions initiate
neration process. The names of the representation units
e Lingware functions are identical: an SSRL statement
t of the representation at the same time represents a
ic part of the generation Lingware which is called up by
edure bearing a name which is identical to that of the
 statement. For instance, an SSRL statement (action x1
”) calls the Lingware procedure (action x1 “start”),
action is the name of the called sub-program and x1

start” are the arguments of the procedure.1
ngware procedures matching the SSRL statements
m the first step of the generation process: they insert
odes into a flat tree structure and assign additional
ation to these nodes. Thus, the first step of the tactical
tion consists in creating a basic tree structure with
ted nodes corresponding to the current SSRL sequence.
hen the complete sequence of SSRL statements is
sted, that is, when all respective Lingware procedures
alled and executed, a flat semantic-pragmatic tree
enting the utterance to be realized has been generated.
odes of the tree contain elementary feature value pairs.
consist of linguistic functions and relational indicators.
rther procedures are called on the subsequent
tion layers in a well-defined order. They build the

 action procedure makes sure that a node is inserted into
e structure and puts pointers, features and values onto
de in compliance with its parameters – here, the pointer

x1 and the notion “start”.

structural description by starting from the deep semantic-
pragmatic tree up to creating a surface-structure tree. Finally,
a separate morphologic generation component is called in
order to generate morphologically well-formed strings.

To sum up, during the generation process, the realizer
generates flat deep structures from semantic-pragmatic
expressions, then syntactic deep structures from the deep
semantic-pragmatic structures, and from these syntactic deep
structures surface strings. With a view to the internal process,
the following steps can be distinguished.

The first part converts semantic-pragmatic expressions
into a flat deep tree structure and is totally language
independent.

The second part converts the semantic-pragmatic tree
into a deep syntactic tree, which is still language
independent.

The third part converts the deep, language independent
syntactic structure into a language dependent surface
structure, and then from here into a well-formed text
sequence of inflected words.

Thus, the most important and general type of operation
performed by the text generation is to convert or transform
tree structures. For this purpose the following means are
employed.

A pre-defined inventory of operators delivered by the
used Lingware.

In particular, the transformation formalism (the xfm
operator) of the Lingware.

The definition of elementary and specific Lingware
procedures which insert sub-trees into already generated
trees or modify them. (This method is comparable to the
procedure of Tree Adjoining Grammars (TAGs) [14],
[15].)

The sub-tree context is defined by node decorations.

Transformations are defined by context conditions that
are composed by structure descriptions and node
decorations.

4. Generation Levels
The initial generation call g, which has as parameter a
sequence of SSRL statements, calls the procedure generate
which has as parameter the SSRL (input) file. The procedure
generate reads this SSRL file and calls up xfm, a Lingware
operator with two arguments (description of the input tree
structure and transformed output structure, respectively),
which creates the initial tree structure and/or resets former
result trees.

After creating the initial tree, generate calls up step-by-
step the procedures described below which carry out the
generation. The following generation levels are distinguished.

Generation level 1: Generating a semantic-pragmatic
deep structure. In order to complete the initial tree (i.e.
S $ $), each statement of the respective SSRL-
sequence representation is evaluated. The result of this
evaluation is a flat semantic-pragmatic tree. The
evaluation itself is performed by the function evals,

w
s

G
c
c
i
p

G
o
e
m
c
r
r

G
s
n
n
t
t
f
a

G
T
t
p
w
f
s
f

G
e
t
i
s
d
p

G
l
c
r
p

G
p
o
r
n

G
a
o
a

As no
appro
contro
hich has as parameter the sequence of SSRL
tatements.

eneration level 2: Assigning syntactic functions and
ategories. Three procedures, put-syn-func, insert-syn-
at, aux-insert, insert elementary syntactic information
nto the tree structure and onto the tree nodes. These
rocedures have no parameters.

eneration level 3: Application of elementary
perations. After evaluating the deep input tree,
lementary operations such as sub-tree insertion and
anipulation (for instance, identification of

oordinations, attributes and relations) are applied. The
espective procedures are: logicizer, attributor and
elator. They do not have parameters.

eneration level 4: Accessing lexical and/or language
pecific information. After evaluating the
otions/concepts supplied by the strategic component,
otions/concepts are replaced with canonical forms
hrough access to the lexicon. The lexicon access allows
he application of multilingual facilities. The respective
unctions that perform lexicon access are get-prep-can
nd get-lex-info. They do not have parameters.

eneration level 5: Evaluation of the deep-structure tree.
his level generates syntactic structures (oriented

owards interface structures) and takes care of gapping
henomena and insertions as language specific parts, as
ell as ordering of sub-clausal structures. The respective

unctions are: internal-cls-structure, insert-specific-
tructure, del-ident-phrase and cls-order. These
unctions do not have parameters.

eneration level 6: Structure type realization and
xpansion. This level takes care of the insertion and/or
ransformation of pre-defined structures, determiner
nsertion as well as ordering of NP and AP sub-
tructures. The respective functions are struct-expansion,
et-insert, np-order and ap-order. They do not have
arameters.

eneration level 7: Morphologic generation. At this
evel, the call to the morphological generation
omponent (the ‘flexer’ tool) is performed. The
espective function get-inflected-form does not have
arameters.

eneration level 8: Final refinement. At this level,
honetic refinement, pretty print and cleaning operations
f the tree and the node decorations are carried out. The
espective functions corr-onset, mult-coord and clean-
odes do not have parameters.

eneration level 9: Output functions. This level provides
 graphic representation of the final tree structure and
utput of the text string. The respective functions draw
nd allostr do not take any parameters.

5. Discussion
ted earlier, we see the main strength of the described
ach in the flexibility it provides to developers for
ling and tuning the generation process. Often there is

more than a single way to accommodate a particular linguistic
phenomenon, and as developers we need to make a design
choice on which option to choose in the current context,
which comprises all covered constructions of the generation
task at hand. To illustrate, the phenomenon of auxiliary
insertion as in English can be treated as a language specific
rule, or as a parametrized application of a language
independent principle. If the first option were selected,
auxiliary insertion could be handled by a procedure at SAG’s
generation level 5 (more specifically, the insert-specific-
structure procedure). If the second option is preferred, then a
procedure aux-insert can be used on generation level 2, as
indeed is the case in SAG. The choice made will have
different ramifications for the solutions available for many
other grammar phenomena that interact with auxiliary
placement.

Such design choices are also familiar from declarative
generation systems of realistic complexity, however in these
systems they only exist on top and outside of the generation
engine, which alone essentially determines the runtime
behavior. This leads back to the general issue of advantages
and disadvantages of declarative approaches in natural
language processing, which we do not want to discuss here in
detail. For our present purpose of providing a generation
component operating under real-time constraints in a spoken
dialog system, we have concluded that the additional control
over procedural aspects provided by SAG outweighs the
benefits of more restrictive declarative generation
architectures in the literature.

We use SAG to build generators for multiple specific
applications in a number of languages. We have lingustic
expertise available to address this task. Yet, while we aim to
observe generality in the range of developed generation
solutions, the fine-grained procedural control has proved
valuable in solving persistent problems such as over- and
undergeneration, as for example in the case of resultatives in
English and other languages, where the default sequence of
adjective preceding head noun is reversed.

An important topic of ongoing work is a detailed
comparison of resource requirements, real-time
characteristics, and output quality across a number of
different generation architectures. Unfortunately, by the
nature of the generation task, such a comparison is rather
intricate, as frequently mentioned in the literature [16].

6. Conclusions
We have described SAG, a procedural realization system for
real-time applications. The procedural approach provides
fine-grained control over the generation process on a
sequence of nine different generation levels. Developers can
therefore tune the system for a specific application depending
on the observed runtime behaviour and the required range of
natural language system outputs.

7. References
[1] M. Rogati, M. Walker, and O. Rambow, “Training

a Sentence Planner for Spoken Dialog: The Impact
of Syntactic and Planning Features”, in
Proceedings of the Eurospeech 2001.

[2] S. McRoy, S. Channarukul, and S. S. Ali,
“Creating Natural Language Output For Real-time

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Applications”, Intelligence 12 (2): 21-34, ACM,
2001.

3] W.C. Mann, “An Overview of the Penman Text
Generation System”, Proceedings of the Third
National Conference on Artificial Intelligence,
Washington, D.C., 261-265, 1983.

4] M. Elhadad, Using Argumentation to Control
Lexical Choice: A Functional Unification-based
Approach, Doctoral dissertation, Columbia
University, New York, 1992.

5] M. Elhadad, “FUF: The Universal Unifier. User
manual, Version 5.2.”, Technical Report CUCS-
038-91, Columbia University, New York, 1992.

6] K. McKeown, Text Generation, Cambridge
University Press, Cambridge, 1985.

7] S. Busemann, “Best-first Surface Realization”,
Proceedings of the Eighth International Workshop
on Natural Language Generation 101-110, 1996.

8] S. Busemann, and H. Horacek, “A Flexible
Shallow Approach to Text Generation”,
Proceedings of the Ninth International Workshop
on Natural Language Generation 238-247, 1998.

9] K. Knight, and V. Hatzivassiloglou, “Two-level,
Many-paths Generation”, Proceedings of the 33rd
Annual Meeting of the ACL, Cambridge, MA.,
252-260, 1995.

10] I. Langkilde, and K. Knight, “Generation that
Exploits Corpus-based Statistical Knowledge”,
Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and
17th International Conference on Computational
Linguistics, Montreal, Canada, 704-710, 1998.

11] I. Langkilde, and K. Knight, “The Practical Value
of N-grams in Generation”, Proceedings of the
Ninth International Workshop on Natural
Language Generation 248-255, 1998.

12] D. Kallulli, “SSRL Ordering Constraints”
Manuscript, SAIL LABS Technology, Vienna,
2001.

13] J. Ritzke, “SSRL: Simple Semantic-pragmatic
Representation Language”, Manuscript, SAIL
LABS Technology, Vienna, 2000.

14] A.K. Joshi, “Introduction to Tree Adjoining
Grammar”, In A. Manaster Ramer (ed) The
Mathematics of Language, 87-114, John
Benjamins, Amsterdam, 1987.

15] A.K. Joshi, and Y. Schabes, “Tree-Adjoning
Grammars”, In G. Rozenberg and A. Salomaa
(eds.) Handbook of Formal Languages, 69-123,
Springer-Verlag, Berlin, 1997.

16] M. Galley, E. Fosler-Lussier, and A. Potamianos.
“Hybrid Natural Language Generation for Spoken
Dialogue Systems”, in Proceedings of the
Eurospeech 2001.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	New Search
	Next Search Hit
	Previous Search Hit
	Search Results

	No Other Papers by the Author

	headREa1: EUROSPEECH 2003 - GENEVA
	pagenumber1: 1
	headREa2: EUROSPEECH 2003 - GENEVA
	Radio:
	pagenumber2: 2
	headREa3: EUROSPEECH 2003 - GENEVA
	pagenumber3: 3
	headREa4: EUROSPEECH 2003 - GENEVA
	pagenumber4: 4

