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1 Introduction

What is a pattern? In a scientific context this term usually has a more
general meaning than in colloquial English. It stands for any form of rec-
ognizable order. This last expression in turn has a probabilistic defintion
which distinguishes it from its opposite, chaos. We only state an example:
If, in the room of a teenager, the probability to find clothes in the closet
is at least marginally higher than the probability to find them in any other
place, this already constitutes a form of order, although the average parent
might not agree with this defintion.

In this course we shall be interested in understanding mechanisms for
the creation of patterns, and our motivation will be taken from biology.
Some of the most fascinating and still poorly understood pattern formation
mechanisms occur in the development of embryos. The wider term mor-
phogenesis, i.e. the creation of different forms and shapes, is often used
in this context. Meta-theories often state the existence of morphogenes as
the carriers of structural information. Pattern formation is then described
as a process, where many morphogenes of different types interact with each
other and with the environment, influencing their creation, annihilation, and
movement.

More generally, we shall consider large ensembles of what we call parti-
cles. This expression is borrowed from physics. Here, a particle will be any
object able to move individually, and which is small compared to the length
scales we are interested in. This leads to the idealization of point particles.
Depending on the situation these can be molecules, cells, or even multicellu-
lar organisms. As a first step, we shall derive mathematical models for the
movement of large particle ensembles.
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2 Random motion of particles

Biological particles usually live in a complex nonhomogeneous environment
influencing their movement. As a consequence, for an observer this move-
ment looks like having a random component. We therefore accept a random
nature of this movement as a postulate for a mathematical description. An-
other postulate, which makes life much easier (although it is not justified in
general), is that regarding the random component of motion the particles
are independent in the probabilistic sense.

We start by considering a discrete one-dimensional random motion. Let
xj = j∆x, j ∈ ZZ, denote the possible positions of particles, and assume that
at the discrete points tn = n∆t, n ∈ ZZ, in time particles perform jumps of
the length ∆x to the left or to the right. Let us assume further that the
probability of jumping to the left is q, and the probability of jumping to the
right is 1−q (with 0 ≤ q ≤ 1, of course). Now we introduce the nonnegative
quantities pn

j , j, n ∈ ZZ, which can be interpreted either as the probability
that one particle is at the position xj at time tn or as the expected number
of particles out of a large ensemble at position xj at time tn or (if the latter
is divided by ∆x) as the expected number density of particles at position
xj at time tn. Then, obviously the values at time tn+1 can be computed in
terms of the values at time tn:

pn+1
j = qpn

j+1 + (1− q)pn
j−1 (1)

Eventually we are looking for continuous descriptions both in time and in
position. Therefore we shall interpret pn

j as approximation for p(xj , tn)
where p is a function of two real valued arguments. With this interpretation
in mind we rewrite the above equation as

pn+1
j − pn

j

∆t
− q∆x

∆t

pn
j+1 − pn

j

∆x
+

(1− q)∆x

∆t

pn
j − pn

j−1

∆x
= 0 .

Our aim is to pass to the limit ∆x,∆t → 0. Obviously the result depends
on the relative size of ∆x and ∆t. We have three main options: Either the
grid speed s := ∆x/∆t tends to zero, to infinity, or we keep it fixed at a
positive finite value. The most interesting result occurs in the latter case,
which we call the significant limit:

∂tp + ∂x(vp) = 0 , with v = s(1− 2q) . (2)

Actually, the other two cases can be recovered by letting s → 0 or s →∞.
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Equation (2) is a one-dimensional convection equation. Solutions are
travelling waves p(x, t) = f(x− vt) with velocity v. With the interpretation
of p as time dependent density of particles along the line, the integrated
version of (2),

d

dt

∫ b

a
p(x, t)dx + vp(b, t)− vp(a, t) = 0 ,

gives the rate of change of the number of particles contained in the interval
(a, b). The term j(x, t) = vp(x, t) can then be interpreted as the flux of
particles through the point x at time t, and v is the mean velocity of particles.

It is interesting to note that equation (2) could have been derived without
any probabilistic effects. The assumption that all particles always move
to the right or always to the left, i.e., q = 0 or q = 1, still leads to (2)
with v = ±s. More generally, the same value of v, and therefore the same
macroscopic equation (2) can be obtained by different choices of the grid
speed s and of the probability q. This shows that the properties of the
microscopic movement cannot be completely recovered from macroscopic
observations.

In the symmetric situation q = 1/2, the mean velocity vanishes, and (2)
becomes trivial. This unsatisfactory situation can be clarified by returning
to the discrete equation (1) and by rewriting it in a different way:

pn+1
j − pn

j

∆t
− (∆x)2

2∆t

pn
j+1 − 2pn

j + pn
j−1

(∆x)2
= 0 .

This shows that for q = 1/2, the significant limit is achieved, when D =
(∆x)2/(2∆t) is kept fixed as ∆x,∆t → 0:

∂tp−D∂2
xp = 0 . (3)

This is the one-dimensional diffusion equation with diffusivity D. Integration
as above shows that the diffusive flux is given by Fick’s law j = −D∂xp.

As for the convection equation we want to demonstrate that the diffusion
equation can also be obtained as macroscopic model for different microscopic
dynamics as long as they do not have a directional bias. Instead of a position
jump process as considered above, we now describe a velocity jump process.
Consider particles, which move along the line with velocity s > 0 or −s.
At discrete points tn = n∆t in time they change to the other velocity with
probability q. We denote the expected density of particles moving to the
right at time tn (after the velocity jump) by rn(x), and the expected density
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of particles moving to the left at time tn by ln(x). Then the densities at
time tn+1 before the velocity jump are given by

r̂n+1(x) = rn(x− s∆t) , l̂n+1(x) = ln(x + s∆t) .

After the velocity jump at time tn+1 we obtain

rn+1(x) = (1− q)r̂n+1(x) + ql̂n+1(x) , ln+1(x) = (1− q)l̂n+1(x) + qr̂n+1(x) ,

which can be rewritten as

rn+1(x)− rn(x)
∆t

+ s
rn(x)− rn(x− s∆t)

s∆t
=

q

∆t
(ln(x + s∆t)− rn(x− s∆t)) ,

ln+1(x)− ln(x)
∆t

− s
ln(x + s∆t)− ln(x)

s∆t
=

q

∆t
(rn(x− s∆t)− ln(x + s∆t)) .

A significant limit is obtained with the scaling assumption that τ := ∆t/q
remains fixed as ∆t → 0:

∂tr + s∂xr =
l − r

τ
, ∂tl − s∂xl =

r − l

τ
.

This is the simplest example of a kinetic transport equation, describing an
ensemble of particles not only by its positional distribution but also its
distribution with respect to velocity. Kinetic transport equations are often
called mesoscopic models. In a macroscopic scaling, x is replaced by x/ε and
t is replaced by t/ε2, where ε is a small positive dimensionless parameter.
This leads to the rescaled version

ε2∂tr + εs∂xr =
l − r

τ
, ε2∂tl − εs∂xl =

r − l

τ
. (4)

For carrying out the macroscopic limit ε → 0, we replace the system by
the first equation an the sum of the equations. After dividing by ε and,
respectively, by ε2, we obtain

ε∂tr + s∂xr =
l − r

ετ
, ∂tp + s∂x

r − l

ε
= 0 , (5)

where p = r + l is the total (or macroscopic) density. In the limit ε → 0,
(4) gives r = l, and the first equation in (5) shows that the flux s(r − l)/ε
converges to −s2τ∂xr = −D∂xp with D = s2τ/2, such that we again obtain
the diffusion equation (3).

So far we have seen that the macroscopic limit of a biased random motion
is a convection equation, and for an unbiased motion it is a diffusion equa-
tion. Actually, both effects can be combined in the macroscopic equation
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by an appropriate scaling assumption. We shall also generalize the position
jump process by allowing a dependence of the jump probability on position
and time:

pn+1
j = qn

j+1p
n
j+1 + (1− qn

j−1)p
n
j−1 .

As in the derivation of the diffusion equation we assume that D = (∆x)2/(2∆t)
is fixed and that the jump probabilities are close to 1/2:

qn
j =

1
2
− v(xj , tn)∆t

2∆x
,

where v(x, t) is a given velocity function. The analogous computations as
in the derivation of the diffusion equation now lead to the one-dimensional
convection-diffusion equation

∂tp + ∂x(vp−D∂xp) = 0 . (6)

Everything we did so far can be extended to higher dimensions with the
result

∂tp +∇ · (vp−D∇p) = 0 , (7)

where now the density p(x, t) depends on position x ∈ IRd, with d = 2 or
d = 3, and on time t ∈ IR. The gradient with respect to x is denoted by
∇ and the divergence by ∇·. The velocity v(x, t)and the flux vp − D∇p
are vector fields. The interpretation of the flux vector is the following: Its
component in the direction ν is the number of particles per time and per
unit area moving through an area element orthogonal to ν. This can be seen
by integrating (7) over a bounded position domain Ω ⊂ IRd and using the
divergence theorem:

d

dt

∫
Ω

p dx +
∫

∂Ω
(vp−D∇p) · ν dσ = 0 , (8)

where ν denotes the unit outward normal vector along the boundary ∂Ω,
and dσ is the line element for d = 2 and the surface element for d = 3.

So far we only described the movement of particles. Equation (7) is a
conservation law. No particles are created or destroyed. As the final step
in this modelling section, we also allow for this possibility. We denote by
f(x, t) the number of particles created or destroyed (depending on the sign
of f) per unit time and unit volume. Then the right hand side of (8) has
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to be replaced by the integral of f over Ω, and the differential version (7)
becomes the reaction-convection-diffusion equation

∂tp +∇ · (vp−D∇p) = f . (9)

Why reaction? In a typical situation our particles are molecules whose
creation or destruction is the result of a chemical reaction. Another inter-
pretation of f in the following will be as a birth/death term.

In the following, systems of equations of the form (9) for different species
of particles will be considered, when x varies in a domain Ω ⊂ IRd. Typically
we shall either assume that Ω is bounded with zero flux boundary conditions

(vp−D∇p) · ν = 0 along ∂Ω ,

or, as an idealization, that Ω = IRd. In the latter case it is usually assumed
that f(x, t) → 0 as |x| → ∞, and that either the total number of particles
is bounded, i.e.,

∫
IRd p dx < ∞, or that p(x, t) converges to a constant value

as |x| → ∞.
For given v and f , the formulation of a well posed problem for the

unknown p is completed by prescribing initial conditions p(x, 0) = pI(x) for
x ∈ Ω, with given initial data pI . Well posedness means that the initial-
boundary value problem has a unique solution continuously dependent on
the data v, f , and pI .

3 Stability of homogeneous steady states

In this section we consider reaction and diffusion of one species of particles
in a stationary homogeneous environment, i.e., equations of the form

∂tp−D∆p = f(p) , (10)

where ∆ = ∇·∇ is the Laplace operator and the stationarity and homogene-
ity of the environment is reflected by the fact that the reaction rate f does
not explictly depend on t or x. A homogeneous steady state is a constant
solution p0 of (10), implying that p0 is a zero of f . If (10) is considered on
the position domain Ω, then a homogeneous steady state satisfies zero flux
boundary conditions (ν · ∇u = 0 on ∂Ω) for bounded Ω and, obviously, the
condition p(x, t) → p0 for |x| → ∞ for Ω = IRd. We shall consider these two
situations.

The stability of p0 is examined by introducing the perturbation u(x, t) =
p(x, t)− p0 where p is a solution of (10) close to p0, i.e., u is small. Substi-
tution in (10), Taylor expanding f around p = p0 (u = 0), and keeping only
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the linear term gives the linearized equation

∂tu−D∆u = f ′(p0)u ,

with zero flux boundary conditions for Ω bounded, and with u → 0 as
|x| → ∞ for Ω = IRd.

For bounded Ω, the linearized problem can be solved by separation of
variables leading to a representation of solutions in the form

u(x, t) =
∞∑

j=0

ujϕj(x) exp([f ′(p0) + Dµj ]t) ,

where ϕ0 = 1, ϕ1, . . . are the eigenfunctions of the Laplace operator subject
to zero flux boundary conditions and µ0 = 0, µ1, . . . are the corresponding
eigenvalues, i.e.,

∆ϕj = µjϕj , ν · ∇ϕj = 0 on ∂Ω ,

for j = 0, 1, . . . Different solutions are distinguished by the choice of the
constants u0, u1, . . . The computation∫

Ω
ϕl∆ϕj dx = −

∫
Ω
∇ϕj · ∇ϕl dx

implies that the Laplace operator with zero flux boundary conditions is sym-
metric with respect to the scalar product defined by pointwise multiplication
and subsequent integration. This has the consequence that all eigenvalues
are real and that {ϕj , j ≥ 0} can be chosen as an orthonormal sequence.
The above formula also implies that the eigenvalues are nonpositive. Actu-
ally it can be shown that µj → −∞ as j → ∞. W.l.o.g. we assume the
eigenvalues to be ordered: µ0 ≥ µ1 ≥ . . .

A steady state solution is called stable if, when starting with an initial
condition close to the steady state the solution remains close to the steady
state for all times, it is called asymptotically stable if, furthermore, such
solutions converge to the steady state as time tends to infinity.

The steady state u = 0 of the linearized problem is stable iff f ′(p0) ≤ 0,
it is asymptotically stable iff f ′(p0) < 0. In these cases we say that the
steady state p0 of the original nonlinear equation is linearized (asymptoti-
cally) stable. It can be shown that linearized asymptotic stability implies
asymptotic stability and that linearized instability implies instability.

In the case Ω = IRd, we solve the linearized equation by the Fourier
transform. The Fourier transform with respect to the position variables is
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defined by

û(k, t) :=
∫
IRd

u(x, t)e−ik·xdx .

Its inverse is given by

u(x, t) =
1
2π

∫
IRd

û(k, t)eik·xdk .

The latter equation is certainly true for smooth u decaying sufficiently fast
as |x| → ∞. The usefulness of the Fourier transform for our purposes is a
consequence of the identity

∇̂u = ikû ,

implying ∆̂u = −|k|2û. Application of the Fourier transform to the lin-
earized equation results in the ordinary differential equation

∂tû = (f ′(p0)−D|k|2)û ,

and, thus, in the general solution

u(x, t) =
1
2π

∫
IRd

ûI(k)eλ(k)t+ik·xdk ,

where ûI is the Fourier transform of u(t = 0) and the equation λ(k) =
f ′(p0) − D|k|2 is called the dispersion relation of the linearized equation.
Obviously the condition for (asymptotic) stability is the same as in the case
of a bounded domain. Actually, the dispersion relation also provides the
discrete values λj = f ′(p0) + Dµj for appropriate choices of the wave vector
k.
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