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‘Gödel’s proof’1 is one of the classic results which have shown the limitations of
logic in the first half of the twentieth century. According to Gödel a formal system
in which it is possible to formulate the arithmetics of whole numbers necessarily
produces some undecidable statements. Thus a straightforward version of the
Hilbert program must fail.

That’s for that. But what does this imply for philosophy beyond the field
of foundations of mathematics? Is the whole world to be seen as a ‘victim of
Gödelisation’?—The importance of Gödel’s proof for the foundational debate in
mathematics and for any kind of philosophy of mathematics is out of question.
What I will ask here, however, is whether there is a philosophical relevance of
Gödel’s proof outside of the field of philosophy of mathematics. What can we
learn from Gödel’s proof if we are not concerned with mathematics but, roughly
speaking, with ‘the world out there’?

A Gödelian question in that field of philosophy could be the following: ‘Is
it possible to provide a formal language in which we are able to formulate any
meaningful statement about the real (spatio-temporal) world so that in a partic-
ular true semantic interpretation of that language it must be decidable for any
such statement whether or not it is true in that interpretation?’ In a way such
a question defines a counterpart to the Hilbert program for the external world.
What I will show here is that, fortunately, we do not have reason to believe that
such a real-world-version of the Hilbert program will fail. There is a straightfor-
ward way to show that languages about the real world can be defined in such
a way that Gödel’s proof (or any other limitation result from the mathematical
foundation debate) is no challenge to them. Therefore, what I will hold here
is that Gödel’s proof has no real philosophical relevance outside of the field of
foundations of mathematics.

We obtain this result on the basis of two philosophical assumptions. First,
we assume that there is no need for an ontology of the real (spatio-temporal)
world to include such things as mathematical objects. A real-world-ontology can
be constructed in a much simpler way, because we can assume the existence
of mathematics and can use mathematics in a naive way. Second, we assume

1 Kurt Gödel (1931): Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173-198.
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that we should be able to give a description of the spatio-temporal world with a
repertoire of only finitely many objects which is at least approximately complete
and at least approximately true.

Given those restricting assumptions we ask on the other hand for a language
with a maximum of expressive possibilities. The language should be a relational
language, constructed in a many-sorted way, so that we can modulate higher
order and other complex kinds of relations (in the sense of Henkin-semantics).
Further we claim that our language has a device for quantification over structures
so that we can formulate statements like ‘φ is necessarily true’, ‘φ is valid’ or
even ‘φ is true in the actual world’ in that language.

The language FIN(S,P,P∗, M) is divided into a non-modal and a modal part.
The non-modal part is defined by a finite set S of finite and two by two disjoint
sets—the sorts of the language—and a finite set P of ‘predicates’ or ‘meaningful
combinations of sorts’. Let N be the set of all finite and non-empty sequences
of elements of S; then P is defined as a finite subset of N . We define:

P× :=
⋃

(sj)i
j=1∈P

s1 × . . .× si.

In order to define FIN as a free logic we require that every sort of S is an element
of P. A structure A is then defined as a subset of P× so that for every atomic
formula c1, . . . , ci it holds:

c1, . . . , ci ∈ A → (cj)i
j=1 : cj ∈ A.

Therefore we can define for every term the existence predicate E(c) as fulfilled
iff c ∈ A. We call A the (finite) set of all FIN-structures.

Now we define the modal part of the language. Let N ′ be the set of all finite
sequences of elements of S ∪ {A} and N∗ := N ′ \ P. Then P∗ is defined as a
finite subset of N∗ and we define:

P∗× :=
⋃

(sj)i
j=1∈P∗

s1 × . . .× si.

The modal model M is simply a subset of P∗×. Every element of a sort out of
S ∪ {A} we define as a constant. Additionally, we have an A-constant SELF with
SELF /∈ A and define, for structures A and every constant c 6= SELF:

A(c) := c,

A(SELF) := A.

For structures A we define E(A) := A (because the modal part of the language
is not defined in the sense of a free logic). Every sequence of constants is an
atomic formula. The syntax of FIN is defined as:

φ ::= p | a ° φ | ¬φ | φ ∧ φ,



where p ranges over atomic formulae and a over A-constants. In addition to the
usual rules for ¬ and ∧ we define, for every atomic formula (c1, . . . , cn), every
A-constant a, every structure A and every formula φ:

A ² (c1, . . . , cn) iff (c1, . . . , cn) ∈ A or (A(c1), . . . , A(cn)) ∈ M,
A ² a ° φ iff A(a) ² φ.

FIN is decidable, because there are only finitely many atomic formulae and thus
the language can be shown to be equivalent to a propositional logic over a finite
set of propositional constants. We can realize quantification in this setting via
some finite conjunctions and disjunctions. Let c ∈ s be a constant, c1, . . . , cn a
sequence which contains every element of s, and x an arbitrary symbol which
we call an s-variable. Then we define, for every formula φ:

∀xφ
[x

c

]
:=

(
E(c1) → φ

[c1

x

])
∧ . . . ∧

(
E(cn) → φ

[cn

x

])
,

We introduce modal operators ¤, in the usual sense:

¤φ iff ∀a : (R, SELF, a) → a ° φ,

R is interpreted as a relation over possible worlds, a is an A-variable. If R is
defined as a total relation, so that (R, A,A′) is valid for every pair (A, A′) of
structures we obtain the special case that ¤φ expresses ‘φ is valid’.

If S contains all the objects of the real world, P defines all the relevant relations
between those objects, and P∗ all the relevant relations over possible worlds
(or other ‘stable’ relations), then we can formulate any possible (modal or non-
modal) statement about the real world as a FIN-formula. Finally, if actual is a
FIN-structure that depicts exactly those relations or propositions which are true
in the actual world, then a particular statement φ about the real world is true iff
it is satisfied in actual. Therefore, we can define (as an element of the language
FIN) the truth-predicate T (φ), for every formula φ:

T (φ) := actual ° φ.


