Flat Semantics

Christian Damböck Moritz Schlick Project Institute Vienna Circle Museumstraße 5/2/19 1070 Wien, Austria christian.damboeck@univie.ac.at

Flat Semantics we will call first order languages where $\zeta \Vdash \phi$ is a kind of first order formula. There ζ is an *interpretation* in the sense defined below and ϕ is any formula of the language. \Vdash is a relation equivalent to the usual second order relation \vDash telling ' ϕ is satisfied in ζ '.

The idea is quite simple. We just have to build our first order language as a *many sorted* one, including the set of all interpretations as a sort into the language:

Let \mathcal{S} be a (usually finite) set – the domain of the first category. We will have individual constants and variables and a finite number of *n*-place predicate and function symbols for some n > 0. For simplification every element of \mathcal{S} should be denoted by exactly one individual constant. This construction we will call the *first* category of our language.

Now an *interpretation* $\zeta = (S_{\exists}, \tau)$ over the first category is defined as a set $S_{\exists} \subseteq S$ of *existing individuals* and a function τ , assigning to the predicate and function symbols of the first category relations and functions over S_{\exists} . With A we denote the set of all interpretations. A is called *the domain of the second category*.

There are again individual constants, variables and a finite number of predicate and function symbols for the second category. A *modal interpretation* o assigns to the predicate and function symbols of the second category relations and functions over \mathcal{A} . (Roughly speaking, o defines such things like relations of 'accessibility of possible worlds'.)

That way our language is given by a *domain structure* $\mathfrak{A} = (\mathcal{S}, o)$, where \mathcal{S} and o are defined as mentioned. It is a two sorted language with the sorts \mathcal{S} and \mathcal{A} .

We introduce atomic formulas and a syntax like in first order logic but with addition of the clause:

If ϕ is a formula and ζ is an interpretation then $\zeta \Vdash \phi$ is also a formula.

We define a value for each interpretation $\zeta = (S_{\exists}, \tau)$ and each valuation of a function $f(c_1, \ldots, c_i)$ of the first category, where c_1, \ldots, c_i are individual constants. If the entities denoted by c_1, \ldots, c_i are contained in S_{\exists} , then the value is given by τ . Otherwise the value is an arbitrary constant **null** not denoting any element of S.

Identity and quantification will also be defined relative to the set S_{\exists} of existing individuals. The remaining semantical definitions are done like in first order logic. Additionally, for any formula ϕ and any interpretations ζ, ζ' there applies:

(F) $\zeta \models \zeta' \Vdash \phi$ iff $\zeta' \models \phi$.

Because \Vdash is reduced to the second order relation \vDash , there cannot be any problem with paradox. In the case of a finite S the set A is also finite and the language, then, is decidable (say, for any formula $z \Vdash \phi$ we can decide if it is satisfied in finitely many steps).

The last important element we need is the *meta-constant* \aleph which denotes in any formula the 'recently active' interpretation ζ . In the formula $\zeta \Vdash \forall z R(\aleph, z)$ for example the constant \aleph denotes ζ . We can define the modal operator \Box :

 $\Box \phi \text{ iff } \forall z : R(\aleph, z) \to z \Vdash \phi$

Here R is a predicate over \mathcal{A} , defining a modal system S5 if it is an equivalence relation and so on. Necessity turns out as a simple first order operator in our language.

Flat semantics gives us some languages, where Tarski's convention (T) has axiomatic validity.¹—From definition (F) it follows immediately that

$$\zeta \vDash \phi \leftrightarrow \zeta \Vdash \phi.$$

It is clear that Tarski-Semantics is unable to implement convention (T) as an axiom, because it simply gives us a definition of being true in an interpretation (or rather in a structure). Therefore, it is impossible in Tarski-Semantics to say something like

 ϕ is true in ζ , iff ϕ in ζ ,

because there is no way to formulate ' ϕ in ζ ' in the object language. In flat semantics, on the other hand, we can define

$$T(\Phi) := \zeta \vDash \phi$$
$$\Phi := \zeta \vDash \phi$$

and will get as an Axiom:

(T)
$$T(\Phi) \leftrightarrow \Phi$$
.

¹Alfred Tarski: 'Der Wahrheitsbegriff in den formalisierten Sprachen', *Studia Philosophica Com*mentarii Societatis philosophicae Polonorum, Vol I, Leopoli, 261-405.