A FRAMEWORK FOR LOGICS. RIGIDITY, FINITISM AND AN ENCYCLOPEDIA OF LOGICS*

Christian Damböck
Institute Vienna Circle
University of Vienna
christian.damboeck@univie.ac.at

*This work was supported by the Austrian Science Fund (FWF), research projects P18596 and P18066.

Universal logic and my proposal

Universal logic is based on the idea of presenting logics as algebraic structures.

I will follow this approach here in some sense. In my understanding

- a deductive system (L, \vdash) is a set L plus a relation \vdash over $\wp(L)$,
- a semantic system (W, L, \vDash) is a relation \vDash between the sets W and L.
- W is thought to be a set here, i.e. \models is a 'set-theoretical predicate' in Patrick Suppes' sense.
- However, I do not follow the universal logic approach insofar as I take neither a deductive nor a semantic system as an expression for such things that we call 'logics'.

But what is a logic?

In my view there are two fundamentally different ways to understand the term 'logic'.

- (1) the mathematical way: a logic is a formal language with a particular expressive power.
- (2) the philosophical way: a logic is a formal language that allows us to express some particular *philosophical notions*.
- Very roughly, a logic in the philosophical sense is a collection of philosophical *devices* like quantifiers, existence predicates, first or higher order predicates, functions, modal operators, etc.

Main question:

How to present such a collection of philosophical devices in a set-theoretic environment?

In a classical framework of mathematical logic (like first-order logic) we can characterize a deductive calculus as an algebraic structure ('set theoretical predicate') but not a semantic system, simply because the class of all semantic interpretations is not a set.

In order to be able to express the most important philosophical features of languages in a set-theoretic framework we need a completely different layout for our languages:

A logic in the philosophical sense must be based on an *interpreted language*, i. e. a language where the names have fixed denotations (direct reference).

Semantic systems for interpreted languages

Let L_a be the language (set of formulas) of propositional logic and L_p the language of first-order logic (without free variables).

- In a semantic system for L_a there is no difference between the interpreted and an the uninterpreted case (because for the specification of the semantic system the difference between propositional constants and propositional variables is insignificant).
- A semantic system for L_p (interpreted case) must be based on the stock of individuals D that is fixed by the individual constants (direct reference!). Thus a structure consists of a subset of D plus relations and functions over this subset.
- The class of all structures of an interpreted language is always constructed as a set of combinations, in an obvious way.

Philosophical logics

Given the semantic system $S = (W, L, \vDash)$ I propose to define a *philosophical logic* in the following way:

L'(S) I call the class of all formulas of the form $w \Vdash \phi$ with $w \in W$ and $\phi \in L$.

Then we have a truth value for every L'-formula $w \Vdash \phi$, defined in an obvious way:

$$w \Vdash \phi = \begin{cases} T & \text{iff it holds that } w \vDash \phi \\ F & \text{otherwise.} \end{cases}$$

This L'(S) I call the philosophical logic over S.

A philosophical logic is an interpreted language, insofar as every sentence of the language has a fixed truth value.

Rigid and finitistic logics (propositional logic as a framework for logics)

Let S_a be a usual semantic system for the propositional language L_a with the logical connectives \neg and \bigwedge (generalized conjunction) and the relation of satisfaction \vDash_a .

Then I call a philosophical logic $L'(W, L, \vDash)$ rigid, if there exists a set $F \subseteq L$ that defines the set \hat{F} of formulas

$$\phi ::= p \mid \neg \phi \mid \bigwedge \Gamma,$$

where p ranges over F and Γ over sets of finite formulas; then there exists a function Θ that (1) maps W injective onto $\wp(F)$ and (2) maps L onto \hat{F} so that for every $w \in W$ and every $\phi \in L$ it holds:

$$w \vDash \phi$$
 iff $\Theta(w) \vDash_a \Theta(\phi)$.

If the set F of a rigid logic is finite and the function Θ is recursive, then we call this logic finitistic.

The connection between interpreted languages, rigidity and finitism

- 1. Philosophical logics (in the technical sense just described) are always rigid.
- 2. A rigid logic is finitistic, iff the set of structures W is finite.
- 3. Every finitistic logic is decidable (regarding both satisfaction and logical consequence).
- 4. Uninterpreted languages generally are not rigid (because the class of structures generally is not a set). (An important counter-example is propositional logic.)
- Although finitistic languages are decidable via truth table method, we will also need deductive systems in a rigid framework, because of questions of speed.

Toward an encyclopedia of philosophical logics

- The notion of a rigid/finitistic language allows a reduction of interpreted languages to propositional logic (cf. Henkin-semantics).
- We can discuss the philosophical features of logics in the realm of set theory here, what clearly is impossible in the case of mathematical logics.
- The project of an encyclopedia of philosophical logics is the project of the development of a catalogue of definitions of 'set-theoretical predicates' for philosophical features of logics.

Some examples:

Example I: names for propositions, predicates and functions

- If a rigid logic contains a set A of propositional constants then we have the power set of A that provides the structures (possible worlds) over A.
- If a rigid logic contains a set D of individual constants and a set P of first-order predicates then we have a set of possible worlds, provided by (D, P) in an obvious combinatorial way (subsets of D and relations over those subsets).
- If a rigid logic contains a set T of type-theoretical objects, together with a function ω that assigns to every element of T its place in the ramified hierarchy of types τ then we have a set W of possible worlds, provided by (T, ω) that is also constructed in an obvious combinatorial way. (W is finite, iff T is finite.)
- In a similar sense we can introduce functions, many-sorted relations and functions, etc.

Example II:

names for relations between worlds

Let L' be any rigid language. Then we introduce

- 1. the set of possible worlds W as a set of individual constants.
- 2. a set of W-variables and a set of W-predicates.
- 3. a constant \(\text{\chi} \) that designates on every place of a formula the world which is actual on this place.
- 4. \Vdash as an additional syntactic element: if y is a W-term and ϕ is a formula then $y \Vdash \phi$ is also a formula.

If r is a binary modal predicate we can define

$$\Box \phi := \forall y : r(\aleph, y) \to y \Vdash \phi$$

and have a perfect expression for modality in the Kripkean sense.

Example III: modal interpretations

- Semantic interpretation for the W-predicates can be provided either via a fixed interpretation or on a second level of semantic interpretation (in an increased version of the language with an additional factor of first-order complexity over W).
- Possibly there can be introduced a ramified hierarchy of semantic interpretations and relations over semantic interpretations.
- Relations can be defined between sets of semantic interpretations and arbitrary types of other sets.
- Of course, we also can introduce functions from arbitrary sets (of semantic interpretations) to arbitrary sets (of semantic interpretations).
- It seems likely that *every* aspect of reasoning about possible worlds (modal logic, relevance logic, dynamic logic, etc.) can be formalized in such a framework.

Example IV: the many-valued case

Because rigid languages are languages in a propositional environment, it is very easy to implement many-valued versions of them. We simply have to modify the truth-functional interpretations of the basic language L_a in a many-valued sense and get for every such interpretation F_m a class of many-valued rigid logics.

Conclusion

The aim of my approach is to develop a concise encyclopedia of philosophical logics. The main advantages of this approach are:

- 1. Logics can be described in a set-theoretical framework (as 'set-theoretical predicates' in Suppes' sense).
- 2. It is easy to develop a unifying language for the specification of 'features' of logics here.
- 3. Questions of speed aside, there is no substantial need for deductive calculi in this framework, because there is a truth-table interpretation for every formula.
- 4. Therefore, the philosophical properties of logics can be discussed here without endless discussions of purely technical questions (completeness proofs, etc.).