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A logic is understood here as an algebraic structure L = (FL,SL, ²L) that consists
of a set FL of formulas (sentences) plus a class SL of structures and a relation of
satisfaction ²L between them. We have the usual metalogical notions like logical
consequence and logical equivalence, defined in the usual way. A logic is rigid, if
there exists a set Fat ⊆ FL so that the logic can be reduced to the propositional
logic that is defined over the set Fat of propositional constants, in an obvious
way. If this reduction is recursive and the basic set Fat is finite, we call the rigid
logic finitistic. – Finitistic logics are an important subclass of the class of all rigid
logics, because of its metalogical merits: every rigid logic is decidable, regarding
both satisfaction and logical consequence. I however discuss mainly the general
rigid case here.

The main advantage of rigid languages is that we can describe them in terms
of set theory. In other words: rigid languages are not a construction of pure
logics or meta-mathematics, respectively, but they are a proper construction of
mathematics: we can take every rigid logic as a mathematical structure and we
can describe every property of this logic in terms of this mathematical structure. –
A construction, similar to this, is the well-known Henkin-trick that reduces richer
languages to first-order logic. But, whereas in the case of the Henkin-reduction
we have a language that is not a part of the mathematical universe in itself and
thus has the well-known properties of expressive power on the one hand and
incompleteness (in the sense of: not being able to express everything in the realm
of set theory) on the other, in the case of reduction to propositional logic we have
a less powerful language which however has the serious advantage that it is part
of the mathematical universe and thus it is complete in a pretty obvious sense.

Of course, rigid logics are useless for the purpose of mathematical foundation
(because we have to assume mathematics to be able to define them). But they
are extremely useful for practically every application that is not intended for
the definition of mathematical languages. Thus rigid languages should be a good
choice for philosophical logics of any kind, because we can define them in a pretty
straightforward and unifying way.

My first example is the rigid first-order logic RIGp(D,P, α) which is built over
a (possibly infinite) set D of individuals, a finite or countable set P of predicates
and a function α : P 7→ N that assigns to each predicate its ‘arity’. A structure S
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is defined by a pair (D∃, π), where D∃ ⊆ D provides the set of ‘existing entities’ of
S and π is a function that assigns to every predicate P ∈ P with α(P ) = i a set
π(P ) ⊆ Di

∃. The syntax and semantics of the language is defined in an obvious
way. – This language is defined as a free logic, because the set D should contain
every possible basic object of the underlying universe; therefore a structure or
possible world must contain only those basic objects that actually exist. Apart
from that, the difference between rigid and non-restricted first-order logic lies
only in the fact that the rigid language is restricted to a particular set of objects,
whereas the universe of first-order logic (with set theoretical axioms) is the class
of all sets.

In a similar way we can define more powerful relational or functional languages
with arbitrarily complex hierarchies of types as rigid logics. I will briefly describe
some examples in my talk.

The second example, which I will describe in more detail, is the construction
of a modal logic over an arbitrary basic logic (which is usually but not necessa-
rily thought to be rigid). Let L = (FL,SL, ²L) be any logic. Then we define
FLPL(Pw, αm,M) as a language over L, where Pw is a set of modal predicates
(i. e. relations of comparability of possible worlds), αm is a function that assigns
to each modal predicate its arity and M = (W, Π) is a modal structure. Here,
W is a set of structures out of SL, called the set of all possible worlds of the
modal structure. (If the logic is rigid, it possibly holds that W = SL.) Π assigns
to every modal predicate P ∈ Pw with αm(P ) = n a set Π(P ) ⊆ Wn. We have
the formulas of the basic language in FLPL plus some obvious syntactic elements
(with an obvious semantic interpretation) for quantification over possible worlds.
Additionally, we have the syntactic device °, defined as a relation between possi-
ble worlds and formulas. (The purpose of this device is that it allows us to define
modal operators in the sense of Kripke-semantics.) The semantics for ° is defined
as

S ² a ° φ iff S(a) ² φ.

Here S is a structure and a is a W-constant, S(a) assigns to the constant a struc-
ture (the structure S′ that is assigned to the constant a by the structure S). This
language provides a generalized framework for modal logics of arbitrary complexi-
ty. We also can enrich the framework by allowing some more complex operations
with possible worlds (by introducing functions and higher-order terms).

Finally, I will discuss briefly some examples for non-classical languages like
many-valued logic in such a rigid framework.

The concluding remark of my talk will be this. The rigid framework is in-
tended as a unifying account that should allow us to develop an encyclopedia of
philosophical logics, in a more straightforward way than we will be able to in rat-
her syntactically oriented frameworks (frameworks that are based on the notion
of a deductive system).
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