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INFINITE FACES AND ENDS OF ALMOST TRANSITIVE

PLANE GRAPHS

BERNHARD KRÖN

Abstract. We prove a conjecture of Bonnington, Richter and Watkins [2]
that in almost transitive, locally finite, plane graphs, disjoint tails of a facial

double-ray lie in different ends. For the infinitely ended case we use the theory
of structure trees and accessibility of almost transitive plane graphs.

As application we classify infinite faces of a locally finite, 2-connected,
almost transitive, plane graphs with a topological embedding.

1. Introduction

1.1. The main result. Rays in graphs are 1-sided infinite paths (consisting of
distinct vertices). Ends of graphs are equivalence classes of rays. Two rays are
equivalent if there is a third ray who has infinitely many vertices in common with
each of them. A plane automorphism of a plane graph is a graph automorphism
which extends to a homeomorphism of the sphere. A plane graph is called almost
transitive in the sphere if the group of plane automorphisms acts almost transitively
(i.e., with finitely many orbits) on the vertices of the graph. A facial double-ray
in clockwise (counter clockwise) direction is a 2-sided infinite path with vertices
. . . , x−1, x0, x1, . . . such that xi+1 is the next neighbour of xi that one encounters
after xi−1 in counter clockwise (clockwise) direction about xi. Bonnington, Richter
and Watkins [2, Conjecture 2] conjectured that disjoint tails (i.e., subrays) of any
facial double-ray in a locally finite almost transitive plane graph belong to different
ends. In the present paper we prove this conjecture.

1.2. Related literature. Freudenthal defined ends of locally finite graphs in [16].
The definition goes back to his more general approach for connected, locally con-
nected, locally compact Hausdorff space, see [14, 15]. A graph theoretic definition
of ends as equivalence classes of rays was given by Halin in [17].

An infinite, connected, almost transitive, locally finite graph has either one or
two ends or the end boundary is a Cantor set. This fact was first observed by Hopf
in [19] in the more general context of Freudenthal ends. In [18] it is shown that in
the one-ended case, the end of the graph is thick (contains infinitely many disjoint
rays), whereas in the two-ended case the ends are thin.

The number of ends of a finitely generated group is defined as the number of
ends of its finitely generated Cayley graphs. This number does not depend on the
choice of the finite generating set. Stallings’ Structure theorem says that a finitely
generated infinite group G has more than one end if and only if it splits over a
finite subgroup C, see [31]. That is, G is an HNN-extension or a nontrivial free
product with amalgamation over C. If A or B has more than one end then this
splitting process can be iterated. The group G is called accessible if this process
stops after finitely many steps. For more details we refer to [10, 12, 26, 32]. In
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[12], Dunwoody proved that finitely presented groups are accessible. Thomassen
and Woess [32] have called a graph accessible if there is a number n such that every
pair of ends can be separated by removing n edges. They showed that a finitely
generated group G is accessible if and only if some (equivalently: any) finitely
generated Cayley graph is accessible. Dunwoody has recently proved in [13] that
all almost transitive plane graphs are accessible.

Let X be a graph with more than one end. The group of automorphisms of X
can be lifted to an action on a so-called structure tree with the help of certain au-
tomorphism invariant partitions (tree-sets) of the graph. To prove the existence of
these partitions is the difficult part of this theory. This was first done by Dunwoody
in [11] and later developed to a more powerful theorem in [7, Theorem II.2.20]. The
construction of structure trees was first treated in [10, Theorem 2.1], for further
references see [7, 21, 24, 25, 32]. Structure tree theory will be one of the ingredients
that we need to reduce the infinitely ended case to the one and two ended cases.

The paper [30] of Richter and Thomassen is important concerning topological
properties of almost transitive plane graphs as subsets of the sphere. They showed
that 3-connected planar graphs have a unique embedding. Moreover, let X be a 2-
connected graph where the vertices of each ray in an end converge to the same point
of the sphere. Then the faces of X are bounded by a closed curve. For details and
precise definitions see below. The results of Richter and Thomassen will allow us to
use specific topological arguments rather than just combinatorial graph theoretic
arguments. These topological arguments will not only play an important role in
the proof of the main result, they will also enable us to simplify proofs of results in
[2].

Bonnington, Imrich and Watkins have studied locally finite, almost transitive,
plane graphs in [4] by means of certain path separation properties. They showed
that locally finite, 2-connected, almost transitive, plane graphs have no infinite
faces.

Bonnington, Richter and Watkins [2] studied bundles of infinite graphs. Bundles
are a refinement of ends. They could show that disjoint tails of facial double-rays
lie in distinct bundles. And they conjectured that this is also true for ends. The
proof of this conjecture is our main result.

Cayley graphs (group diagrams) are a rich source for interesting examples of
infinite transitive plane graphs, see Bonnington and Watkins [3], Droms, Servatius
and Servatius [8], Droms [9], Mohar [27, 28] and Renault [29].

1.3. Contents and methodology. In Section 2 we give basic definitions for graphs
as 1-complexes and we define the end compactification |X | of locally finite graphs.

A plane graph is a graph which is embedded in the sphere S2. We will see in
Section 3 that for infinite plane graphs, this embedding can be of different quality
in a topological sense. A plane graph X is accumulation free if no point x of X
is accumulation point of edges which do not contain x. A plane embedding of a
graph is called pointed if the vertices of each ray in an end converge to the same
point of the sphere. That is, every end corresponds to exactly one point in the
sphere. Such a point will be called projected end. A face of a plane graph is a
component of the complement of the closure of the graph as subset of the sphere.
For us important is the result from [30] that the faces of 2-connected graphs with a
pointed embedding are bounded by a closed curve, see Theorem 1. Finally, a plane
graph X is topological if the identity on X extends to a homeomorphism between
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the closure X of X in S2 and the end compactification |X |. In [30] it is proved
that every plane, 2-connected, locally finite graph has a topological embedding, see
Theorem 2.

In locally finite plane graphs, the edges which are incident with some vertex
can be ordered in clockwise direction. With this order we define facial walks as
mentioned above. In infinite plane graphs, there is not necessarily a one-to-one cor-
respondence between facial walks and faces. It can happen that facial walks are not
contained in the boundary of any face or that there are faces whose boundaries do
not intersect the graph at all, see Example 1. In Section 4 we discuss the connection
between facial paths and faces for 2-connected accumulation free plane graphs. In
Theorem 4 we show that no two facial rays in an end have the same orientation. As
corollary, this yields a theorem of Bonnington, Richter and Watkins (Theorem 5)
that the number of facial double-rays in a locally finite 2-connected plane graph is
less or equal the number of ends. If in addition the graph is accumulation free then
the number of infinite faces is also less or equal the number of ends, see Theorem 6.
The previously mentioned result from [30], that faces of locally finite 2-connected
pointed plane graphs are bounded by a closed curve, enables us to derive a relatively
simple topological proof of Theorem 5.

A graph is called almost transitive if the group of automorphisms acts almost
transitively (i.e., with finitely many orbits) on the set of vertices. In Section 5
we discuss some elementary properties of almost transitive (not necessarily plane)
graphs concerning ends and translations of double-rays.

The conjecture of Bonnington, Richter and Watkins [2, Conjecture 2] (see above)
is formulated in Theorem 7. In Section 6 we prove this conjecture for the case of
almost transitive graphs with one or two ends and give a detailed discussion of this
fact in Theorem 8. On the one hand, we use specific arguments concerning almost
transitive graphs with one or two ends where the graph metric plays an important
role. Similar techniques are used in the theory of metric ends, see [20, 22, 23]. On
the other hand, Theorem 5 (the number of infinite faces is less or equal the number
of ends) plays an important role in the proof.

In Section 7 we state basic definitions and results on structure trees and ac-
cessibility. For us important will be the main theorem in structure tree theory
from Dicks and Dunwoody [7] about the existence of certain partitions of the graph
which are invariant under the action of all graph automorphisms, see Theorem 9.
Another crucial tool will be is a recent result of Dunwoody: In [13] he proved that
almost transitive locally finite plane graphs are accessible, see Theorem 10.

In Section 8 we prove the conjecture of Bonnington, Richter and Watkins for
almost transitive, locally finite 2-connected graphs with infinitely many ends, and
we give a more detailed discussion of this case in Theorem 11. The ends of the
graph X are mapped to vertices or to ends of the structure tree by a function Φ in
a natural way. Using [7, Theorem II.2.20], Thomassen and Woess showed in [32]
that if X is accessible then there exists a structure tree such that Φ is injective.
They constructed certain subgraphs Xv of X which correspond to vertices v of
the structure tree. These subgraphs have three nice properties. First, if X is
almost transitive then so is Xv. Second, every ray of an end in Φ−1(v) has infinite
intersection with Xv. Third, there is a bijection between Φ−1(v) and the end space
of Xv. In particular, if Φ is injective and Φ−1(v) is not empty then it follows that
Xv has one thick end. Hence by combining this construction with the accessibility
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of almost transitive plane graphs, we are able to trace back the infinitely ended case
to the one-ended and two-ended case that we have treated before in Section 6. The
proof for thin ends in infinite graphs uses the fact that facial double-rays in locally
finite almost transitive graphs are translatable together with a well known result of
Halin from [18]: Disjoint tails of such translatable double-rays lie in different ends
if and only if these ends are thin.

What remains is the 1-connected case. In Section 9 we give a simple construction
with the help of which we can turn a 1-connected almost transitive plane graph into
a 2-connected almost transitive plane graph, see Theorem 12. We state some results
on facial walks in 1-connected graphs which are analogues to previous results on
2-connected graphs, see Lemma 12 and Theorem 13, followed by a discussion of our
main result for 1-connected graphs in Theorem 14.

Finally, in Section 10, we apply our results in order to classify faces of almost
transitive locally finite plane graphs which have a topological embedding. The
interesting case is the case of infinite faces in infinitely ended graphs. The boundary
of such a face either consists of two double rays and two projected ends, or it is
the union of countably many double-rays and a Cantor set consisting of projected
ends.

2. Preliminaries

A graph X is a union V X ∪ EX of a set of vertices V X and a set of edges EX
with the following properties.

(i) Edges are arcs of simple curves between distinct vertices whose parameter
run through the unit interval.

(ii) Different edges have different sets of end-vertices.
(iii) The interior of an edge contains no vertex and no point of any other edge.

The two vertices which are contained in an edge are called end-vertices of the
edge. The edge with end vertices x and y is denoted by [x, y] or [y, x]. Vertices x
and y are adjacent (or neighbours) if there is an edge [x, y]. A graph is locally finite
if every vertex is only adjacent to finitely many other vertices. A subgraph of X is
a graph Y such that V Y ⊂ V X and EY ⊂ EX .

A walk π of length n from a vertex x to a vertex y is a subgraph of the form

(2.1) {x = x0} ∪ [x0, x1] ∪ {x1} ∪ [x1, x2] ∪ . . . ∪ [xn−1, xn] ∪ {xn = y}

where xi ∈ V X and 0 ≤ i ≤ n. If x0 = xn then π is called a closed walk. A subwalk
of π is a walk {xi} ∪ [xi, xi+1] ∪ {xi+1} ∪ . . . ∪ [xj−1, xj ] ∪ {xj}. A 1-way or 2-way
infinite walk is a walk with vertices xi and edges [xi, xi+1], for i ∈ N or i ∈ Z,
respectively. A 1-way infinite subwalk of an infinite walk π is called a tail of π.

Walks with distinct vertices are called paths. Rays and double-rays are 1-way
infinite paths and 2-way infinite paths, respectively. Edges are arcs of simple curves
whose parametrization induces a metric on the edges such that adjacent vertices
have distance 1. If X is connected and the interiors of the edges are disjoint then
the metric on the edges extends to a metric d on X , such that the distance d(x, y)
between two vertices x and y is the length of a shortest path from x to y. We call
d the graph metric of X . When we talk about subgraphs Y of X then with d we
always mean the distance with respect to underlying graph X and not with respect
to Y . For a point x in X we define
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d(x, Y ) = min{d(x, y) | y ∈ Y }.

Let B(Y, r) denote the set {x ∈ X | d(x, Y ) ≤ r}. Note that if r is an integer and
Y is a subgraph of X then B(Y, r) is also a subgraph of X . If x is a vertex then
B(x, r) = B({x}, r) is the closed ball with center x and radius r.

A finite graph is a graph with finitely many vertices. Let A, B and F be sub-
graphs of X . We say that F separates A from B if every path from a vertex in A
to a vertex in B contains an element of F . Ends are equivalence classes of rays,
where two rays are equivalent whenever there is a third ray who has infinitely many
vertices in common with each of them. This is equivalent to saying that rays are
equivalent if they cannot be separated by a finite subgraph.

Let C be a subset of X . The vertex boundary NC is the set of vertices in X \C
which are adjacent to a vertex in C. A subgraph Y of X is said to live in a subgraph
C of X if V Y \ C is finite. Let ω be an end and let NC be finite. Then either all
rays in ω live in X \ C, or they all live in C. In the latter case, we say that ω lives
in C. We write ΩC to denote the set of ends which live in C. A neighbourood of
an end ω is a subset of X ∪ΩX that contains a set C ∪ΩC where C is a subgraph,
NC is finite and ω lives in C. This extends the topology of X to X ∪ ΩX . If X
is locally finite then the resulting topological space |X | is metrizable and compact
and ΩX is totally disconnected and compact. For more details we refer to [6].

In non-locally finite graphs there are various ways to topologize X ∪ ΩX , see
[5, 20]. For locally finite graphs, all these concepts coincide with the Freudenthal
compactification of connected, locally connected, locally compact Hausdorff space,
see [14, 15, 16].

3. Plane graphs

A graph is plane if it is a subset of the sphere {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}.

Let X denote the closure of X with respect to the topology of S2. The connected
components of S2 \ X are called faces of X . Let z be an element of a plane graph
X and let E(z) be the union of edges which contain z. We call X accumulation
free if no element z of X is in the closure of X \ E(z). Equivalently, if no z is an
accumulation point of X \E(z). Note that if z is such an accumulation point then
z must be an accumulation point of infinitely many distinct edges, because edges
are closed and the interiors of distinct edges are disjoint, see Example 1.

The following can be found in [30, Lemma 4]. For the convenience of the reader
we give a simple direct proof.

Lemma 1 (Lemma 4 [30]). The boundary of a face of a connected plane graph X
is connected.

Proof. Suppose there is a face f of a connected graph X whose boundary is discon-
nected. Any boundary is closed and S2 is compact. Hence ∂f is compact. There
is a simple closed curve c in S2 \ ∂f which separates components of ∂f . (To see
this, consider an open cover of a component C of ∂f consisting of open balls whose
closures are disjoint with ∂f \ C. The union of a finite subcover is bounded by a
simple closed curve.) The complement S2 \ c consists of two open components A
and B which both contain elements of ∂f . Hence A and B both contain elements
of X as well as of f . The graph X is pathwise connected by its construction and f
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is pathwise connected, because it is an open connected subset of S2. It follows that
the curve c must intersect X and f . Hence c intersects ∂f , a contradiction. �

Let [x, y] be an edge. We set (x, y) = [x, y]\{x, y}, and we use the same notation
for subarcs of [x, y].

Lemma 2. Let f be a face of an accumulation free plane graph and let [x, y] be an
edge. If ∂f ∩ (x, y) 6= ∅ then [x, y] ⊂ ∂f .

Proof. If (x, y) ⊂ ∂f then [x, y] ⊂ ∂f , because ∂f is closed. Otherwise, there is an
open subarc (a, b) of [x, y] whose end point z is in ∂f \ {x, y} and (a, b) ∩ ∂f = ∅.
Suppose z = a.

Case 1. If a were an accumulation point of ∂f \ [x, y] then a would also be an
accumulation point of X \ [x, y] = X \E(a), and X would not be accumulation free.

Case 2. There is an open neighbourhood O of a (with respect to the topology
of S2) such that O ∩ ∂f ⊂ [x, y]. This implies that a part of O ∩ ∂f is a subarc of
[x, y] with a as end-point, which is also impossible. �

A plane graph X is called pointed if every ray has exactly one accumulation point
in S2. In pointed plane graphs, rays in the same end have the same accumulation
point. In this sense, every end of a pointed plane graph corresponds to exactly one
point on the sphere. We call this point the projected end or projection of the end.
An element of S2 may be the projection of more than one end. Note that these
projections may be elements of the graph, see Example 1.

Theorem 1. [30, Theorem 7, Proposition 3] Let X be a locally finite 2-connected
pointed plane graph. Then X is locally connected in the sphere. The faces of X are
bounded by a simple closed curve.

A plane graph is said to embed topologically in S2 if the identity on X extends
to a homeomorphism f : |X | → X where f(ΩX) = X \ X . That is, |X | embeds
in the sphere. Let there be a sequence of vertices which converges to an end ω
in the end topology. Then this sequence converges to the projection f(ω) of ω in
the topology of the sphere, and vice versa. Note that the topology of |X | is by
definition independent of the embedding. In topological plane embeddings, rays
which lie in different ends have to converge to different points in the sphere.

An isomorphism between plane graphs X and Y is a homeomorphism g : X → Y
such that g(V X) = V Y . An isomorphism X → X is called an automorphism
of X . Two graphs Y and Y ′ are called homeomorphic in the sphere if there is
an isomorphism g : Y → Y ′ that can be extended to an orientation preserving
homeomorphism of S2.

It is clear that plane graphs which are embedded topologically are pointed and
accumulation free. The following example shows that there are pointed plane graphs
which are not accumulation free and there accumulation free plane graphs which
are not pointed.

A face f is called proper if X ∩ ∂f 6= ∅.

Example 1. The graph in Figure 1a is accumulation free but not pointed, whereas
the graph in Figure 1b is pointed but not accumulation free. The graph in Figure 1c
is embedded topologically.

There are also graphs which are pointed and accumulation free, but which are
not topological. Simply consider a double-ray whose projected ends coincide, such
that X is a circle.
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The following graph X is accumulation free and pointed, but not topological
and it has a face which is not proper. Let Sn, n ∈ N \ {1}, be circles in S2 with
center o and radius 1 − 1/n. Let S be the circle with the same center but with
radius 1. We can choose 2n vertices on each circle Sn such that every element of S
is an accumulation point of vertices. Now we choose edges such that the resulting
graph X is a binary tree which is rooted in o and such that no interior of any edge
intersects one of the circles Sn. The resulting graph X is pointed and accumulation
free, but it is not embedded topologically, because X \X is the circle S, but |X |\X
is ΩX which is a Cantor set (with respect to the topology of |X |). Note that S is
the boundary of a face f of X . This means that ∂f ∩X = ∅ and f is not a proper
face.

Figure 1a Figure 1b

Figure 1c

Let X and Y be a locally finite 2-connected plane graphs such that there is a
isomorphism g : X → Y with the property that for all finite subgraphs Z of X ,
the graphs Z and g(Z) are homeomorphic in the sphere. Then X is called locally
homeomorphic to Y .

Lemma 12 of Richter and Thomassen in [30] says that every locally finite 2-
connected plane graph has a topological embedding in the sphere. But in fact, they
have proved the following.

Theorem 2. Every 2-connected locally finite plane graph has a topological embed-
ding in the sphere which is locally homeomorphic.

4. Facial walks

Let X be a locally finite plane graph. Then for every vertex y and every edge
[x, y] there is a next edge [y, z] in the clockwise (or counter clockwise) direction
with respect to y. A facial walk with clockwise (counter clockwise) orientation is
a walk (x = x0, [x0, x1], x1, . . . , [xn−1, xn], xn = y) where [xi, xi+1] is the next edge
to [xi−1, xi] in counter clockwise (clockwise) direction with respect to xi and such
that if i 6= j then xi−1 6= xj−1 or xi 6= xj . The last condition means that a facial
walk does not go through one edge two times in the same direction. Maximal facial
walks are either finite and closed or 2-way infinite. In 2-connected graphs, every
facial walk is a path.

Let R be a facial ray in a locally finite 2-connected pointed plane graph. Then
the orientation of R as facial ray coincides with the orientation of R as part of
the closed curve from Theorem 1. But note that facial paths and their directions
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are defined by neighbours in clockwise or counter clockwise direction, and not by
curves in boundaries of faces and their orientation.

Lemma 3. Let X be a 2-connected accumulation free plane graph. A path is a
maximal facial path if and only if it is a maximal path in the boundary of a face.
Such paths are either finite closed paths or double-rays.

Proof. Let π be a maximal facial path. Then π is a finite closed path or a double-
ray, because X is 2-connected. Let the vertices of π be xi, either 0 ≤ i ≤ n and
x0 = xn or i ∈ Z, and such that xi is adjacent to xi+1. Since X is accumulation
free, π has to intersect the boundary of some face f . If π is completely contained
in ∂f then π is of course maximal in ∂f . Suppose not. If ∂f contains an inner
point of some edge then it contains the whole edge, see Lemma 2. Hence there is
a subpath of π with vertices xi, j ≤ i ≤ k, which is contained in ∂f , but either
xj−1 is not in ∂f or xk+1 is not in ∂f . Suppose the latter is the case. Then the
interior of [xi, xi+1] is disjoint with ∂f . Either there is an open neighbourhood
of xi (with respect to the topology of S2) whose intersection with X is contained
in E(xi). Then [xi, xi+1] cannot be the next edge after [xi−1, xi] in the sense of
orientation corresponding to the facial walk. Or there is no such neighbourhood.
Then xi is an accumulation point of infinitely many distinct edges, and X would
not be accumulation free. Hence π is contained in ∂f .

Let π be a path with vertices xi which is maximal in the boundary of a face f .
Following an edge [xi, xi+1] from xi to xi+1, the face f is on the left or on the right
side of [xi, xi+1], or on both sides. Suppose π is not a facial path.

Case 1. The face f is on the left side of all edges of π. Then there must be
a vertex xi such that [xi, y] is the next edge after [xi−1, xi] in clockwise direction
(seen from xi) and y 6= xi+1. Then [xi, y] is also contained in ∂f and f ∪ xi, which
is a connected set, separates y from xi−1 and xi+1 and X is not 2-connected.

Case 2. There are edges [xi−1, xi] and [xi, xi+1] such that f is on the left side of
[xi−1, xi] and on the right side of [xi, xi+1]. Then f ∪ xi separates xi−1 from xi+1

and X is not 2-connected.
Hence π is a facial path. If π is finite and closed or 2-way infinite then π is also

maximal as facial path. Otherwise, we can add edges to π such that we obtain a
maximal facial path π′. We have seen before that π′ is contained ∂f . This would
then contradict the assumption that π is maximal in ∂f . �

As corollary we obtain the following.

Theorem 3. Let f be a proper face of a 2-connected accumulation free plane graph
X. Then either ∂f is a closed finite path of X, or X ∩ ∂f is the union of disjoint
facial double-rays.

Proof. Let f be a proper face. Suppose X ∩ ∂f contains a vertex x. Since X is
accumulation free, there is a neighborhood U of x (with respect to the topology of
S2) such that U ∩∂f ⊂ E(x). Hence ∂f contains an inner point of an edge e which
is incident with x. One of the maximal facial paths (the one in clockwise or the
one in counter clockwise direction) has to be contained ∂f , see Lemma 3. If this
path π is finite, then it is closed and π = ∂f . Otherwise π is a double-ray. �

Theorem 4. No end of a locally finite 2-connected plane graph contains two facial
rays with the same orientation.
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Proof. Suppose there is an end of X which contains two facial rays R and S with the
same orientation. Let us consider a topological locally homeomorphic embedding
Y of X . Such an embedding exists by Theorem 2. We write P and Q for the rays in
Y which correspond to R and S in X . Since X and Y are locally homeomorphic, R
and S have the the same orientation as P and Q, respectively. Moreover, the rays
P and Q also have an orientation as part of the closed curve which is the boundary
of their faces, see Theorem 1.

Let π be a path from P to Q. Let TP and TQ be tales of P and Q with vertices
(p0, p1, . . .) and (q0, q1, . . .), respectively, such that p0 and q0 are the only vertices
in these tails which are in π.

If P and Q were in the boundary of the same face then π would separate P from
Q. This would contradict the assumption that P and Q are in the same end.

Suppose P and Q are in boundaries of different faces fP and fQ. The path π is
contained in an open set U (with respect to S2) such that U ′ = U \(π∪fP ∪fQ) has
two components. Because TP and TQ have the same orientation, there is a subarc
(p0, a) of (p0, p1) which is in one component of U ′ and a subarc (q0, b) of (q0, q1)
which is in one component of U ′. In this sense we can say that TP \ {p0} begins
on one side of π and TQ \ {q0} begins on the other side of π. But TP \ {p0} and
TQ \ {q0} are contained in the same component C of Y \π, because they are in the
same end. Hence there is a finite walk πC from p0 to q0, such that πC is completely
contained in C. Then the arc πC \ {p0, q0} starts in one component of U ′ and ends
in the other component of U ′. It follows that π ∪ πC separates fP from fQ. This
contradicts the assumption that P and Q are in the same end. �

Bonnington, Richter and Watkins showed in [2, Theorem 7.1] that if a 2-connected
locally finite plane graph has exactly m ends then it has at most m facial double-
rays. Theorem 4 yields this result as corollary.

Theorem 5. An end of a locally finite 2-connected plane graph X contains at
most two facial rays. The number of facial double-rays is less or equal the number
of ends.

For the next corollary we also use Theorem 3.

Theorem 6. The number of infinite proper faces of a locally finite accumulation
free 2-connected plane graph is less or equal the number of ends.

5. Almost transitive plane graphs

A plane isomorphism of plane graphs X and Y is a map X → Y which can
be extended to an orientation preserving homeomorphism of the sphere. A plane
automorphism of X is a plane isomorphism X → X . A group G acts almost
transitively on a set A if it has only finitely many orbits. That is, if there is a finite
set F ⊂ A such that

⋃

g∈G g(F ) = A. A graph X is almost transitive if the set of
graph automorphisms acts almost transitively on V X . A plane graph X is called
almost transitive in the sphere if the plane automorphisms act almost transitively
on V X . Let g be an automorphism of a graph X . Let D be a double-ray with
vertices xi, i ∈ Z, such that xi is adjacent to xi+1. We call g a translation of D if
there is a positive integer k such that g(xi) = xi+k, for all i ∈ Z.

Ends are called thick if they contain infinitely many disjoint rays, and they are
called thin otherwise. The next two lemmas are well known and have been proved
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for different definitions of thin and thick ends for locally finite and non-locally finite
graphs.

Lemma 4 (Theorem 9 in [18]). Let g be a translation of a double-ray D. Let ω1

and ω2 be the ends of disjoint tails of D. Then either ω1 = ω2 and this end is thick.
Or ω1 6= ω2 and these ends are both thin. The ends ω1 and ω2 are fixed by g, and
they are the only ends which are fixed by g.

Lemma 5 ([17, 19]). Let X be an infinite, almost transitive, locally finite graph.
Then either

(1) X has one end and this end is thick,
(2) X has two ends and these ends are thin, or
(3) X has infinitely many ends and ΩX is a Cantor set (with respect to the

topology of |X |).

A similar theorem was proved by Hopf for Freudenthal ends of locally compact
connected spaces which have a compact set whose translates under a group G of
homeomorphisms cover the whole space. This property is the topological analogue
to almost transitivity in locally finite graphs. In [1], Abels observed that this can
be weakened to the property that every end is an accumulation point of elements
of an orbit {g(x) | g ∈ G}, for some point x. Abels’ theorem can be applied to
locally finite graphs.

Lemma 6. Let X be a locally finite almost transitive graph with two ends. Let D
be a double-ray whose tails lie in different ends. Then there is a number r such that
B(D, r) = X.

Proof. Since X is almost transitive and has two ends, there is an integer c such that
every ball with radius c separates the two ends. If X \B(D, r) were non-empty for
all numbers r then there would be a vertex y such that B(y, c) is disjoint with D,
and this ball would then not separate the two ends. �

Lemma 7 (Lemma 7.5 in [2]). Facial double-rays of almost transitive, locally finite
graphs are translatable by plane automorphisms.

Proof. Let G be the group of plane automorphisms. Then there is an infinite orbit
of G in V D. Let x be an element of such an orbit. Then there are elements f and
h of G such that f(x) and h(x) are distinct vertices of D and such that f and h
map the same pair of neighbours of x to D. Here we use the fact that X is locally
finite. It follows that fh−1(D) = D. The automorphism g = fh−1 does not fix the
vertex h(x). Hence g translates D. �

6. The conjecture of Bonnington, Richter and Watkins for graphs

with one or two ends

We will prove the following theorem which was conjectured by Bonnington,
Richter and Watkins.

Theorem 7 (Conjecture 2 in [2]). Disjoint tails of a facial double-ray in a locally
finite almost transitive plane graph belong to different ends.

By Lemma 5, an infinite connected almost transitive graph has either one, two
or infinitely many ends. First we give a classification of all possible situations for
the cases of one and two ends for 2-connected graphs.
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Theorem 8. Let X be a locally finite almost transitive 2-connected plane graph.

(1) If X has one end then there is no infinite facial walk.
(2) If X has two ends then there is either no infinite facial walk or there are

exactly two facial double-rays. Disjoint tails of these double-rays lie in
different ends.

The one-ended case of Theorem 8 was already proved in [4, Theorem 2.3]. The
present proof works for the one- and the two-ended case at the same time. Before
giving this proof we want to have a look at some simple examples.

Example 2. All four graphs are 2-connected, locally finite, plane and transitive
in the graph theoretic sense. The graphs in Figure 2a, b and c are also transitive
as plane graphs. That is, the plane automorphisms act transitively on the set of
vertices. The graph in Figure 2d is not almost transitive as plane graph. It is the
only one out of these four graphs for which Theorem 8 does not apply. The graphs
in Figure 2b, c and d are isomorphic in the graph theoretic sense, but not in the
sense of plane isomorphisms. Each of these three graphs has two thin ends.

The first graph (Figure 2a) has one thick end and no infinite facial path. The
graph in Figure 2b has two infinite facial double-rays whose tails lie in distinct ends.
The third graph has no infinite facial paths. The graph in Figure 2d has one facial
double-ray whose tails all lie in the same end.

Figure 2a Figure 2b

Figure 2c Figure 2d

Proof of Theorem 8. Let X be connected, locally finite, almost transitive, 2-connected,
plane and with one or two ends. If there is no infinite facial walk then there is noth-
ing to prove. Suppose there is an infinite facial walk. Since X is 2-connected, this
walk is a double-ray D.

Case 1. There is an integer c such that B(D, c) = X .
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This implies that an end which contains a tail of D has to be thin. By Lemma 5,
X has exactly two ends which are both thin. The double ray D is translatable by
an automorphism, see Lemma 7. Lemma 4 implies that disjoint tails of D are in
different ends ω1 and ω2. Let F be a finite subgraph which separates these ends
and let C1 and C2 be the subgraphs which are spanned by components of X \ F
that ω1 and ω2 live in, respectively. Note that these graphs Ci are not necessarily
2-connected. Let Di be the 2-way infinite facial walk in Ci which contains the tail
D ∩ Ci. Let Ri be a tail of Di which does not intersect F . Then Ri has to be a
ray, because of the 2-connectedness of X . Hence Di contains two tails which are
rays and which do no not intersect F . These tails are disjoint, otherwise X would
not be 2-connected. And these rays are also facial in X . Hence there are at least
four disjoint facial rays in X . By Theorem 5, a graph with two ends has at most
two facial double-rays. Hence X has exactly two facial double-rays, one of them
is D and the other we denote by D′. Because the tails of D lie in different ends
and because each end can at most contain two facial rays, it follows that ω1 and
ω2 each contain one tail of D and one tail of D′. This completes the proof of the
theorem for case 1.

Case 2. The complement X \ B(D, c) is not empty, for all integers c.
Since the plane automorphisms of X act almost transitively on V X , there is an

integer r such that
⋃

g∈G g(B) = X , for any closed ball B with radius r. There

is a vertex x such that d(x, D) = r + 1. Let y be any vertex in D. Then there
is a g ∈ G such that g(y) ∈ B(x, r). Hence g(y) 6∈ D, which implies g(D) 6= D.
The image g(D) is a facial double-ray, because plane automorphisms map facial
double-rays to facial double-rays. Theorem 5 implies that X has two ends. These
ends are thin, see Lemma 5. If the tails of D were in different ends then Lemma 6
would imply that there is an integer such that B(D, c) = X . The same holds
for g(D). By Theorem 5, it follows that the tails of D are in one end, and the
tails of g(D) are in the other end of X . There is a finite connected subgraph F
which contains elements of D and of g(D), and which has the property that the
complement X \F has exactly two infinite components C1 and C2, one of which is
disjoint with D the other disjoint with g(D). We can find a plane automorphism
h such that h(F ) ⊂ C1. The graph F intersects two facial double-rays. The same
holds for h(F ). Hence C1 intersects two facial double-rays. This means there is
a third facial double-ray. By Theorem 5, there is a third end and thus case 2 is
impossible. �

7. Structure trees and accessibility

The coboundary δe of a subgraph e of X is the subgraph consisting of all edges
which connect a vertex of e with a vertex of V X \ e. Let e∗ denote the subgraph
spanned by V X \ e. Note that e ∪ e∗ ∪ δe = X . A cut is a subgraph of X whose
coboundary is finite. If |δe| = n then e is called an n-cut. Define BnX to be the
Boolean ring generated by all n-cuts. Let BX denote the Boolean ring generated
by all cuts. All the elements in BX are cuts. A set E of cuts is said to be a nested
if for each choice of e and f in E, one of the intersections

e ∩ f, e ∩ f∗, e∗ ∩ f, or e∗ ∩ f∗

is empty. A nested set E is called a tree set if for all elements e and f in E such
that e ⊂ f , there are only finitely many elements g ∈ E such that e ⊂ g ⊂ f . A
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tree set E is called undirected if whenever e ∈ E then e∗ ∈ E. Let G be a group of
automorphisms of X . A tree set E is called G-invariant if

G(E) = {g(e) | g ∈ G} = E.

A cut e is said to be tight if both e and e∗ are connected.

Lemma 8 (Proposition 4.1 in [32]). Let n be an integer and let q be an edge of a
connected graph. Then there are only finitely many tight n-cuts whose coboundary
contains q.

Corollary 1 (Corollary 4.3 in [32]). Let G be a group of automorphisms acting
almost transitively on the vertices of a locally finite connected graph. Then, up to
G-equivalence, there are only finitely many tight n-cuts. In other words, there is a
finite set M of tight n-cuts with the property that for every tight n-cut e there is a
g in G such that g(e) is in M .

Dicks and Dunwoody have proved the following remarkable theorem in their
book [7].

Theorem 9 (Theorem II.2.20 in [7]). Let X be a connected graph and let G be a
subgroup of the group of automorphisms of X. Then there is a chain of G-invariant
undirected tree sets E1 ⊂ E2 ⊂ . . . in BX such that the elements of En are tight
k-cuts, where k ≤ n, and En generates BnX.

Corollary 2 (Proposition 7.1 in [32]). Let X be a locally finite connected graph and
G be a subgroup of the group of automorphisms of X. Let ω1 and ω2 be ends which
can be separated by removing n edges. Let En be a tree set according to Theorem 9.
Then there is a cut e in En such that ω1 lives in e and ω2 lives in e∗.

From a tight undirected G-invariant tree set E in BX , we can build a directed
tree T (E). Such a construction was first described in [10, Theorem 2.1]. It is also
treated in [7, Section II.1], [21], [25] and [32]. In the following, we will only give
a brief description of the structure tree T (E). The reader is referred to the above
references for more details and proofs.

Cuts e and f in an undirected tree set E are defined as equivalent if e ⊃ f∗ and
there is no third cut g in E such that e ⊃ g ⊃ f∗. This is an equivalence relation
and the corresponding equivalence classes are the vertices of T (E). Vertices x and
y of T (E) are adjacent if and only if there is a cut e in E such that e is in x and
e∗ is in y. In this way, each element e of E corresponds to exactly one edge of
T (E) which is a directed tree. If E is a G-invariant tree set then T (E) is called a
structure tree of E (with respect to G).

For every vertex x in V X there is exactly one vertex v of T (E) such that x is
element of all cuts in v. We set φ(x) = v. This defines a map φ : V X → V T (E)
such that φ−1(v) =

⋂

e∈v e. Let ω be an end of X . Then either there is a vertex v
of T (E) such that every ray in ω lives in each cut of v. Then we set Φ(ω) = v. Note
that this does not necessarily mean that the rays of ω live in φ−1(v). Or there is a
sequence of cuts e0 ⊃ e1 ⊃ . . . in E such that every ray of ω lives in all cuts ei. The
edges of T which correspond to these cuts constitute a ray in T (E). We write Φ(ω)
for the end in T (E) of this ray. This yields a map Φ : ΩX → V T (E) ∪ ΩT (E).

Let En be a tree set as in Theorem 9 and let ω be an end of X . If Φ(ω) ∈ ΩT (En)
then ω is thin. Or equivalently, if ω is thick then Φ(ω) ∈ V T (En).

The following recent result of Dunwoody will be crucial for the proof of the
infinitely ended case of our main result.
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Theorem 10 ([13]). Almost transitive locally finite plane graphs are accessible.

8. The infinitely ended case

A geodesic path π from a vertex x to a vertex y is a path of minimal length.
That is, the length of π is d(x, y). A geodesic ray is a ray whose finite subpaths are
all geodesic.

Lemma 9 ([33]). Every end of a locally finite graph contains a geodesic ray.

Proof. Let R be a ray of an end ω with vertices xi, i ≥ 0, such that xi is adjacent
to xi+1. Let y be any vertex and let πi be a geodesic path from y to xi. Since X
is locally finite, there is a sequence πij

, j ≥ 0, which converges to a ray S. Then S
is a geodesic ray in ω. �

The following construction is similar to a construction by Thomassen and Woess
[32, Section 7]. The authors treated the case where the tree set generates the
Boolean ring of all cuts. They showed that this is equivalent to X being accessible.
Let G be a group of automorphisms of a connected, locally finite graph X which
acts almost transitively on V X . Let E be a G-invariant tree set and let y be a
vertex of the corresponding structure tree T (E). Recall that the vertex v is an
equivalence class of cuts and φ−1(v) is the intersection of all cuts in v. Note that
this intersection might be empty. Let Gv denote the stabilizer of v. This the set
of elements of G which fix v. Let e be a cut in v. There is a union Π(e) of finitely
many finite paths in X \ e with distinct end vertices in Ne such that

(G) Π(e) contains all geodesics (with respect to the metric of X) in e∗ between
end vertices of Ne which are contained in e∗. And

(P) if π1, π2, . . . , πr are pairwise disjoint paths in e∗ connecting distinct vertices
of Ne then there are pairwise disjoint paths π′

1, π′
2, . . . , π′

r in Π(e) with the same
end vertices.

For all cuts g(e) in Gv(e) = {g(e) | g ∈ Gv}, we set Π(g(e)) = g(Π(e)). We do
the same for all other orbits Gv(f) of cuts f in v. By Corollary 1, there are only
finitely such orbits Gv(f) in v. We define Xv as the graph spanned by the union
of φ−1(v) with all subgraphs Π(e), for all e in v.

Lemma 10.

(i) If X is 2-connected that Xv is also 2-connected.
(ii) All geodesic rays of ends in Φ−1(v) live in Xv.
(iii) Let R be any ray of an end in Φ−1(v). Then infinitely many vertices of R

are in Xv.
(iv) The number of ends of Xv is the same as the number of ends in Φ−1(v).
(v) The stabilizer Gv acts almost transitively on V Xv.

Proof.
(i) Suppose X is 2-connected. Let x be any vertex of Xv. Suppose x is in

φ−1(v). If Xv \ {x} would be disconnected then x would either separate the paths
of a set Π(e) from the rest of Xv, or there would be a component of Xv \ {x} whose
vertices are all in φ−1(v). In either case, X \ {x} would also be disconnected. If
x ∈ Xv \φ−1(v) then x is in some path π in Π(e) which connects distinct vertices in
Ne. The cut e is connected, because it is tight. Property (P) ensures that Xv \Π(e)
is connected. It follows that Xv \ {x} is connected. Hence Xv is 2-connected.

(ii) This is a consequence property (G).
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(iii) This follows from the fact that R lives in all cuts e in v.
(iv) Let ω be an end in Φ−1(v). We choose a geodesic ray R in ω, see Lemma 9.

By (G), the ray R lives in Xv. Define f(ω) as the end of Xv which contains a tail
of R. We will show that the resulting map f : Φ−1(v) → ΩXv is a bijection.

Let ω1 and ω2 be distinct ends in Φ−1(v). Their rays can be separated by a finite
set of vertices F ⊂ V X . Then F ∩ Xv separates f(ω1) from f(ω2) in Xv. Hence f
is injective.

Let η be an end of Xv. A ray S in η is also a ray in X . Let ω be the end of X
which contains S and let R be the geodesic ray in ω which defines the end f(ω).
Suppose f(ω) is not the same end as η. Then there is a finite subgraph F in Xv,
and there are distinct components C and D of Xv \ F such that R is contained in
F ∪C and S is contained in F ∪D. Since the graphs Π(e) are finite we may assume
that the following is satisfied:

(R) For all sets Π(e), e ∈ v, either Π(e) ⊂ F or Π(e) ∩ F = ∅.

Suppose there is a path in X from C to D which is disjoint with F . Then this path
has to contain a subpath π with vertices x = z0, z1, . . . , zn = y, such that x ∈ C
and y ∈ D (or vice versa), zi is adjacent to zi+1 and the vertices z1, . . . , zn−1 are
not in Xv. Suppose n ≥ 2. Then x and y have to be contained in the sets Π(e),
e ∈ v. The vertices x and y cannot lie in distinct sets Π(e) and Π(e′), because the
tree set is nested. Suppose x and y are in the same set Π(e). Then Π(e) ∩ F = ∅,
because Π(e) ⊂ F is impossible, see property (R). Then property (P) implies that
x and y can be connected by a path in Xv \F , a contradiction. If n = 1 then [x, y]
is an edge of Xv and we have a contradiction to the fact that F separates C from
D in Xv. Hence η = f(ω) and f is surjective.

(v) The group G acts almost transitively on φ−1(v). Let g be an element of G
which maps some vertex of φ−1(v) to another vertex of φ−1(v). The sets φ−1(v),
v ∈ V T (E), form a G-invariant partition of V X . Hence g ∈ Gv and Gv acts almost
transitively on φ−1(v). Since Gv has only finitely many orbits on the cuts in v and
the graphs Π(e) are finite, it follows that Gv acts almost transitively on V Xv. �

We are now ready to prove the conjecture of Bonnington, Richter and Watkins
for the infinitely ended case.

Theorem 11. Let X be a 2-connected, locally finite, almost transitive plane graph
with infinitely many ends.

Then no thick end contains a facial ray.
A thin end contains at most two facial rays. Disjoint tails of a facial double-ray

lie in different ends.

Proof. Suppose X has a thick end which contains a facial ray. Let Y be a locally
homeomorphic, topological embedding of X , see Theorem 2. Then Y has again a
thick end which contains a facial ray. We denote this end by ω and the facial ray
by R.

By Theorem 10, Y is accessible. That is, there is an integer n such that each
pair of ends can be separated by removing n edges. Let G be the group of plane
automorphisms of Y and let En be a tree set according to Theorem 9. Let ω1 and
ω2 be any pair of ends. By Corollary 2, there is a cut e in En such that ω1 lives in
E and ω2 lives in e∗. This implies that the map Φ : ΩX → V T (En) ∪ ΩT (En) is
injective.
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Since ω is thick, Φ maps ω to a vertex v of T (En). Let Yv be the graph according
to Lemma 10. Then infinitely many vertices of R are in Yv. The ray R is contained
in a facial double-ray, because Y is 2-connected, and this double-ray is in the
boundary of a face f of Y , see Lemma 3. The face f is a component of S2 \Y . And
this component must be contained in a component f ′ of S2 \ Yv, because Yv is a
subgraph of Y . We have R∩ Yv ∩ ∂f ⊂ R∩ Yv ∩ ∂f ′. Hence ∂f ′ contains infinitely
many vertices of R, and Yv has an infinite face. Since Yv has only one end, this is
a contradiction to Theorem 8 (1).

Let ω be a thin end which contains a facial ray. Then ω contains a facial double-
ray D which is translated by some plane automorphism g of X , see Lemma 7. By
Lemma 4, the tails of D lie in distinct thin ends. That ω contains no more than
two facial rays is what we have proved in Theorem 5. �

9. 1-connected plane graphs

To complete the proof of Theorem 7, the conjecture of Bonnington, Richter and
Watkins we still have to consider the 1-connected case.

From a locally finite almost transitive plane graph X we will construct a 2-
connected graph Xd, called a doubling of X , which is again locally finite and
almost transitive. For all vertices x, we choose a counter clockwise ordering of
its neighbours x0, x1, . . . , xdeg(x)−1. The vertices of V Xd are elements x(xi, j),

for i ∈ {0, . . . , deg(x) − 1}, j ∈ {0, 1} and x ∈ V X . The edges of Xd are (i)
[x(xi, 0), x(xi, 1)], (ii) [x(xi, 1), x(xi+1, 0)] (we consider the index i + 1 modulo
deg(x)), and (iii) for all edges [x, y] of X we have two edges [x(y, 0), y(x, 1)] and
[x(y, 1), y(x, 0)] in EXd. This means that every vertex of x of X is replaced by a
circle of length 2 deg(x) and every edge [x, y] of X is replaced by two edges. For
each edge [x, y] of X there is a closed path of length 4 in Xd with vertices

(9.1) x(y, 0), x(y, 1), y(x, 0), y(x, 1).

And the circles of length 2 deg(x) have vertices

(9.2) x(x0, 0), x(x0, 1), x(x1, 0), x(x1, 1), . . . , x(xdeg(x), 0), x(xdeg(x), 1).

Note that all doublings of a locally finite, plane graph X are isomorphic in the
graph theoretic sense. The above construction implies the following.

Lemma 11. If X is connected then Xd is 2-connected.

Let g be a plane automorphism of X . We define gd(x(y, i)) = g(x)(g(y), i).

Theorem 12. Let X be locally finite, plane and accumulation free. Then there is
a plane and accumulation free doubling Xd of X such that if g is a plane automor-
phism of X then gd is a plane automorphism of Xd. Let G be a group of automor-
phisms of X which acts almost transitively on V X. Then Gd = {gd | g ∈ G} acts
almost transitively on V Xd.

Proof. Let Y be a topological embedding of X , see Theorem 2. Edges [x, y] are
closed arcs from x to y and (x, y) has no accumulation point on any other edge
except for x and y. There is a family U of pairwise disjoint connected open neigh-
bourhoods Ux of x, for all x ∈ V X , such that ∂Ux is a simple closed curve which
intersects each of the edges [x, x0], . . . , [x, xdeg x−1] in one single point and these
points are ordered in counter clockwise direction around x along this curve. There is
also a family of pairwise disjoint, connected neighbourhoods V[x,y] of [x, y]\(Ux∪Uy),
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for all edges [x, y], such that the only neighbourhoods in U which intersect V[x,y]

are Ux and Uy. We can construct these neighbourhoods by induction, because Y
is locally finite. There is a plane embedding of the circle in (9.2) in Ux such that
the edges [x(xi, 0), x(xi, 1)] are in Ux ∩V[x,xi] and the edges [x(xi, 1), x(xi+1, 0)] are
contained in

Ux \
⋃

j∈{0,1,...,deg(x)}\{i,i+1}

V[x,xj].

The edges of type [x(y, 0), y(x, 1)] and [x(y, 1), y(x, 0)] can now be embedded in
V[x,y] such that the resulting graph is a plane, accumulation free doubling of X .

Let g be an automorphism of X . Since g is a bijection V X → V X , the map gd

is a bijection of the closed paths of type (9.2). The vertices of each of these circles
are mapped bijectively to the vertices of another closed path of this type. Hence
gd is a bijection V Xd → V Xd. Let u and v be vertices of Xd. Suppose u and v are
adjacent in Xd. If (i) u = x(xi, 0) and v = x(xi, 1) then g(u) = g(x)(g(xi), 0) and
g(v) = g(x)(g(xi), 1) are again adjacent in Xd, in the sense of (i), because g(x) is
adjacent to g(xi) in X . Suppose (ii) u = x(xi, 1) and v = x(xi+1, 0). Then g(xi+1)
is the the next neighbour of g(x) after g(xi) in clockwise direction, because g is
orientation preserving. Hence g(x)(g(xi), 1) is adjacent to g(x)(g(xi+1), 0). If (iii)
u = x(y, 0) and v = y(x, 1) then x is adjacent to y in X , g(x) is adjacent to g(y) in
X , and hence g(u) = g(x)(g(y), 0) is adjacent to g(v) = g(y)(g(x), 1) in Xd. Thus
gd preserves adjacency. The same holds for (gd)−1. Hence gd is an automorphism
of Xd. Let X be plane and let g be a plane automorphism of X . Then by the
above construction, every closed path of type (9.1) or (9.2) is the boundary of a
face. All other faces of XD correspond to faces of X in an obvious way and gD

acts on these faces in the same way as g acts on these faces of X , and gd is a plane
automorphism of XD.

Suppose G has p orbits on V X . Then there are at most p different degrees for
the vertices of X . Since X is locally finite, the maximal degree q is finite. The
group Gd acts on the set of closed paths of type (9.2) with at most p orbits. The
maximal length of these paths is 2q. Hence Gd has at most 2pq orbits on V Xd. �

A doubling Xd according to the construction in the proof of Theorem 12 is
called a plane doubling of X . A quasi ray is a 1-sided infinite walk with vertices
xi, i ∈ Z, and edges [xi, xi+1], such that for every vertex y there are only finitely
many i ∈ Z with xi = y. A quasi double-ray is a 2-sided infinite walk which has
disjoint tails that are quasi rays. Results on plane 2-connected graphs can some-
times easily be reformulated for connected graphs by replacing the terms “maximal
facial path/ray/double-ray” by “maximal facial walk/quasi-ray/quasi double-ray”,
respectively. For example, the following is the analogue to Lemma 3.

Lemma 12. Maximal facial walks of connected accumulation free plane graphs X
are contained in the boundary of a face.

An infinite maximal facial walk in a locally finite graph is either a quasi double-
ray or any pair of its tails have infinitely many vertices in common.

Proof. Let X be locally finite and plane. An infinite maximal facial walk D is 2-way
infinite. Let D have vertices xi, i ∈ Z, and edges [xi, xi+1].

By definition, a facial walk does not go through the same edge twice in the same
direction. Hence there is no vertex y such that y = xi for infinitely many i, because
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X is locally finite. This implies that if D is not a quasi double-ray then any pair
of tails of D has infinitely many vertices in common.

Let X be any connected accumulation free plane graph. Then there is a face f
such that ∂f intersects the interior of an edge of D. To prove that D is contained
in ∂f , we can now repeat the arguments used in the proof of Lemma 3. �

Let D be a two-sided infinite facial walk with vertices xi and edges [xi, xi+1],
i ∈ Z. Suppose D has counter clockwise orientation. Recall that this means that
among the edges which are incident with xi, [xi, xi+1] is the next edge after [xi, xi−1]
in clockwise direction. Let Xd be a plane doubling of a plane graph X . We define
Dd as the walk in Xd with vertices

. . . x−1(x0, 1), x0(x−1, 0), x0(y1, 1), x1(x0, 0), x1(x2, 1), x2(x1, 0), x2(x3, 1), . . .

If D has clockwise orientation then define Dd as the walk in Xd with vertices

. . . x−1(x0, 0), x0(x−1, 1), x0(x1, 0), x1(x0, 1), x1(x2, 0), x2(x1, 1), x2(x3, 0), . . .

From the construction of Xd, see the proof of Theorem 12, it follows that Dd is a
facial double-ray with the same orientation as the facial walk D.

Theorem 13. Every infinite maximal facial walk of a connected, locally finite,
plane graph which is almost transitive in the sphere is a quasi double-ray. Each
pair of disjoint tails of such a walk are in different ends.

Proof. Let X be a connected, locally finite, plane graph which is almost transitive
in the sphere. Let Y be a locally homeomorphic, topological embedding of X .
Let D be an infinite maximal facial walk in Y with vertices xi, i ∈ Z, and edges
[xi, xi+1]. Suppose D is not a quasi double-ray. Then by Lemma 12, any pair of
tails has infinitely many vertices in common. This implies that disjoint tails of the
facial double-ray Dd lie in the same end of Xd. If Xd has one or two ends then
this contradicts Theorem 8. If Xd has infinitely many ends then this contradicts
Theorem 11. �

Theorem 13 completes the proof of the conjecture of Bonnington, Richter and
Watkins, see Theorem 7. With the construction of plane doublings we can derive
Theorems 8 and 11 also for 1-connected graphs.

Theorem 14. Let X be a connected, locally finite, almost transitive, plane graph.

(1) If X has one end then there is no infinite facial walk.
(2) If X has two ends then there is either no infinite facial walk, or there are

exactly two facial quasi double-rays. Disjoint tails of these quasi double-rays
are in different ends.

(3) If X has infinitely many ends then no thick end contains a facial quasi-ray.
Thin ends contain at most two facial quasi-rays. Disjoint tails of quasi

double-rays lie in different ends.

10. An application

Recall that in graphs with a topological embedding, projections of ends ω are
elements η of X \X such that every ray in ω converges to η in the topology of S2.
As a consequence of our main result we obtain the following classification.
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Theorem 15. Let f be an infinite face of an infinitely ended, 2-connected, almost
transitive, plane graph with a topological embedding. Then either ∂f is the disjoint
union of two double-rays and two projected ends. Or ∂f is the disjoint union of
countably many double-rays and a Cantor set consisting of projected ends.

Proof. Theorem 3 says that ∂f contains a double-ray D. Suppose ∂f \ D consists
of a single point. Then any disjoint tails of D belong to the same end ω, because
X is embedded topologically. This is a contradiction to Theorem 7. If ∂f \ X
consists of exactly two points then ∂f is the union of two facial double-rays and
the projections of the ends which contain tails of these double rays.

Suppose ∂f \X has more than two elements. The end boundary ΩX is compact
and totally disconnected in |X |. Since X is embedded topologically, the correspond-
ing set in S2, which is X \ X , is compact and totally disconnected in S2. The set
∂f \ X is compact and totally disconnected in S2 because it is the intersection of
X \X and ∂f . Suppose ∂f \X contains an isolated point η which is the projection
of an end ω. Then η has to be in the closure of two double-rays D1 and D2, because
∂f is a closed curve, see Theorem 1. There is a translation g of D1 which fixes
f , see Lemma 7. But D2 is also invariant under g. This can be seen by the fact
that ω does not contain a tail of any facial double ray other that D1 and D2, see
Theorem 5, or by the fact that g has to fix the closed curve which is bounding f .
The boundaries ∂D1 and ∂D2 each consist of two elements. Say ∂D1 = {η, η1} and
∂D2 = {η, η2}. Then η1 6= η2, because ∂f \ X has more than two elements. Hence
g fixes three distinct points η, η1 and η2. And g fixes the corresponding three ends
of X . But this is a contradiction to Lemma 4. Hence ∂f has no isolated points.
Thus ∂f \ X is a Cantor set. And ∂f ∩ X has to be the union of infinitely many
disjoint double-rays. That there are only countably many such double-rays can be
seen by the fact that ∂f is bounded by a closed curve. �

Both cases of Theorem 15 may occur.

Example 3. The doubling of a regular tree can be embedded topologically such
that there is only one infinite face whose boundary is the union of countably many
double-rays and a Cantor set of projected ends.

The following infinitely ended, plane Cayley graph X , see Figure 3, has finite
faces (bounded by closed paths of length four) and infinite faces whose bound-
aries consist of two facial double-rays and, if X is embedded topologically, of two
projected ends.

G = (Z/2Z ∗ Z/2Z ∗ Z/2Z) × Z/2Z =
〈

a, b, c, d | a2 = b2 = c2 = d2 = (ad)2 = (bd)2 = (cd)2 = 1
〉

,

and X = Cay(G, S) for S = {a, b, c, d}. That is, V X = G and x is adjacent to y if
and only if xy−1 is in S. The graph consists of an “upper” and a “lower” 3-regular
tree, each of which correspond to one of the left cosets of {1, a} ∗ {1, b} ∗ {1, c} ≃
Z/2Z∗Z/2Z∗Z/2Z. Pairs of vertices of the upper and the lower tree are connected
by edges which correspond to the left cosets of {1, d} ≃ Z/2Z. To see that the plane
automorphisms act transitively on the vertices we suggest to imagine the graph with
a topological embedding in the sphere, so that the faces have no “inside” and no
“outside” as in the plane.

The same graph can be found [28], but there it is not embedded almost transi-
tively in the sphere.
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