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Abstract We define for a compactly generated totally disconnected locally com-
pact group a graph, called a rough Cayley graph, that is a quasi-isometry invariant
of the group. This graph carries information about the group structure in an ana-
logue way as the ordinary Cayley graph for a finitely generated group. With this
construction the machinery of geometric group theory can be applied to topologi-
cal groups. This is illustrated by a study of groups where the rough Cayley graph
has more than one end and a study of groups where the rough Cayley graph has
polynomial growth.
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Introduction

The concept of a Cayley graph has become a standard part of the toolkit used to
investigate and describe groups. It has become particularly important in the study
of infinite finitely generated groups, where the Cayley graph and related concepts
provide a way to treat the group as a geometric object. When the group is finitely
generated it can be shown that various properties of Cayley graphs are the same no
matter which finite generating set is used to construct the Cayley graph. This part
becomes problematic when we consider groups that are not finitely generated.
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The aim of this paper is to present a construction of a graph for compactly
generated totally disconnected locally compact groups that can be used in a simi-
lar way as the Cayley graph is used in the study of finitely generated groups. This
construction allows us to apply the machinery of geometric group theory to com-
pactly generated totally disconnected locally compact groups. We illustrate this
by looking at the theory of ends of groups and groups of polynomial growth.

There is an extensive literature on group actions on graphs, see e.g. the survey
[36], linking together algebraic properties and properties of the group action. The
real novelty of the present approach is that we start just with a group, not with a
given action of a group on a graph, making this approach a useful tool in group
theory.

In [60], Woess studied the automorphism group of and infinite, connected, lo-
cally finite transitive graph as topological groups. A neighbourhood of the identity
is given by the pointwise stabilizers of finite sets of vertices. Such automorphism
groups are compactly generated, totally disconnected and locally compact. Hence
they are a special case of the groups studied in the present paper. The crucial dif-
ference is that we start only with a given group instead of starting with a group
action on a graph. Our construction will yield a group action on a graph, which
we will call a “rough Cayley graph”. The rough Cayley graphs will turn out to be
unique up to quasi-isometry, see Theorem 2. Hence we are in a similar situation
as when studying ordinary Cayley graphs of finitely generated groups: The geo-
metric structure (the graph) is uniquely determined (up to quasi-isometry) by the
algebraic structure.

In the first section we present definitions and background material on permu-
tation groups, graphs, topological groups and the interplay of these concepts. The
construction is presented in Section 2. We start with a compactly generated totally
disconnected locally compact group G, choose a compact open subgroup U and
a finite set {s1,s2, . . . ,sn} such thatU ∪{s1,s2, . . . ,sn} generates G, and use these
to construct a graph X . The graph X is locally finite and connected and the group
G acts transitively on X . This graph will be called a rough Cayley graph for G. In
Section 2 it is shown that any two such graphs for G are quasi-isometric. If G is
finitely generated and U is the trivial group then this construction yields a usual
Cayley graph of G. Hence finitely generated Cayley graphs are special cases of
rough Cayley graphs.

In Sections 3 and 4 we illustrate the use of the concept of rough Cayley graph.
In Section 3 we define the space of ends of compactly generated totally discon-
nected locally compact groups. We prove an analogue of Stallings’ Ends Theorem
for groups with infinitely many ends in Section 3.2. The construction of rough
ends and the analogue of Stallings’ Ends Theorem are related to the work of Abels
in [1]. This relationship is discussed in Section 3.6. In Section 3.3 we focus on the
concept of accessibility. The natural translation of the definition of an accessible
group into terms appropriate for our totally disconnected locally compact groups
is shown to be equivalent to the graph X being accessible in the sense of [53]. In
Section 3.5 we investigate the action of group elements on a rough Cayley graph
and how this action can be used to divide G into three disjoint classes (ellpitic,
parabolic, hyperbolic) resembling the classification of isometries in hyperbolic
geometry. In the final part of Sections 3 we relate the concept of ends of pairs of
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groups to the rough ends. As a byproduct we deduce a result due to Dunwoody
and Roller [11] (also proved by Niblo [43] and Scott and Swarup [49]).

In Section 4 the growth of the graph X is related to the growth of the topo-
logical group G. The outcome is a version of Gromov’s theorem on groups of
polynomial growth for compactly generated totally disconnected locally compact
groups. Many of the results and methods used can be found in the papers by Losert
[32] and Woess [60].

The final section is a collection of remarks and comments on the previous
sections and the possibilities for further work using rough Cayley graphs.

1 Preliminaries on graphs and groups

1.1 Permutation groups and graphs

All the graphs in this paper are undirected except the orbital graphs defined below
and the structure trees discussed in Chapter 3. Our graphs are without loops or
multiple edges. Thus one can think of a graph X as an ordered pair (VX ,EX)
where VX is a set and EX is a set of two element subsets of VX . The elements of
VX are called vertices and the elements of EX are called edges. Vertices v and u
are said to be neighbours, or adjacent, if {v,u} is an edge in X . A path of length n
from v to u is a sequence v= v0,v1, . . . ,vn = u of vertices, such that vi and vi+1 are
adjacent for i = 0,1, . . . ,n−1. A graph is connected if for any two vertices v and
u there is a path from v to u in the graph. Let d(x,y) denote the length of a shortest
path from a vertex x to a vertex y. If X is connected then d is a metric on VX .
When we are dealing with different graphs at the same time we will sometimes
write dX instead of d. Let A be a set of vertices in X . The subgraph spanned by
A is a graph having A as a vertex set and the edge set is the set of all edges in X
such that both end vertices belong to A. We say that A is connected if the subgraph
spanned by A is connected. The connected components (or just components) of a
graph are the maximal connected sets of vertices.

LetG be a group acting on a setY . The action is transitive if for any two points
x,y in Y there is an element g ∈G such that gx= y. For a point x ∈Y the stabilizer
in G of x is the subgroup

Gx = {g ∈ G | gx= x}.

We define the pointwise stabilizer of a set A⊆ Y as the subgroup

G(A) = {g ∈ G | gx= x for every x ∈ A}.

When A= {x,y} then we write Gx,y for G(A).
Suppose U is a subgroup of a group G. The group G acts on the set G/U

of left cosets of U such that the image of a coset hU under an element g ∈ G is
(gh)U . This action is transitive. Conversely, if G acts transitively on some set Y
and x is a point in Y then Y can be identified with G/Gx in the following way:
For each y ∈ Y we choose an element hy ∈ G such that hyx= y. Then the function
θ : Y → G/Gx, where y &→ hyGx, is bijective. For every y ∈ Y and every element
g ∈ G we get θ(gy) = gθ(y), that is, θ gives an isomorphism of G-actions or,
phrased differently, θ is covariant with the action of G.
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The orbits of the stabilizer Gx are called suborbits of G and the orbits of G
on Y 2 are called orbitals. When G acts transitively on Y there is a simple one-to-
one correspondence between the orbits of Gx and the orbitals: the suborbit Gxy
corresponds to the orbital G(x,y). A (directed) orbital graph X = (VX ,EX) is
formed by letting the set of vertices VX be equal to Y and letting the set of edges
EX be a union of some orbitals. The graphs we get by this construction are directed
graphs but in our case we want undirected graphs. Hence we use a similar method
to construct a graph X where VX = Y and EX is a union of orbits of G on two
element subsets of Y . These graphs can be called undirected orbital graphs.

It is easy to see that G acts on an undirected orbital graph as a group of graph
automorphisms, because if g ∈ G and {x,y} is an edge in an orbital graph, then
{gx,gy} is in the same orbit and thus also an edge. When all the suborbits of G
are finite and the edge set of an orbital graph is a union of finitely many orbitals
then this orbital graph is locally finite (i.e. each vertex in it has only finitely many
neighbours).

A block of imprimitivity for G is a subset A of Y such that for g ∈ G, either
gA= A or A∩gA= /0. The existence of a non-trivial proper block of imprimitivity
A (non-trivialmeans that |A|> 1 and propermeans that A (=Y ) is equivalent to the
existence of a non-trivial proper G-invariant equivalence relation∼ on Y . When G
acts transitively onY , the block A and its translates underG give the∼-classes, and
conversely, if ∼ is a non-trivial proper G-invariant equivalence relation then each
∼-class is a non-trivial proper block of imprimitivity for G. If ∼ is a G-invariant
equivalence relation on Y then G permutes the ∼-classes and thus G acts on the
set Y/∼ of equivalence classes.

Finally, we review the definition of a Cayley graph of a group. Let G be a
group and S a subset of G. The (undirected) Cayley graph Cay(G,S) of G with
respect to S has the set of elements in G as a vertex set and {g,h} is an edge if
h = gs or h = gs−1 for some s in S. The Cayley graph Cay(G,S) is connected if
and only if S generatesG. The left regular action ofG on itself gives us a transitive
action of G as a group of graph automorphisms on Cay(G,S).

1.2 Topological groups and the permutation topology

A topological space is said to be totally disconnected if the only connected subsets
are single element sets. It is an old result of van Dantzig that a totally disconnected
locally compact group always contains a compact open subgroup (see [5] or [21,
Theorem 7.7]). A topological group G is compactly generated if there is a compact
subset that generates G.

Let G be a group acting on a set Y . The action of G on Y can be used to
introduce a topology on G. (The survey paper by Woess [60] contains a detailed
introduction to this topology.) The topology of a topological group is completely
determined by a neighbourhood basis of the identity element. The permutation
topology on G is defined by choosing as a neighbourhood basis of the identity the
family of pointwise stabilizers of finite subsets of Y , i.e. a neighbourhood basis of
the identity is given by the family of subgroups

{G(F) | F is a finite subset of Y}.
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Think ofY as having the discrete topology and elements ofG as mapsY →Y . Then
the permutation topology is equal to the topology of pointwise convergence, and it
is also the same as the compact-open topology. A sequence (gi)i∈N of elements in
G has an element g ∈ G as a limit if and only if for every x ∈ Y there is a number
N (depending on x) such that gnx= gx for every n≥ N.

Various properties of the action of G on Y are reflected in properties of this
topology on G. For instance, the permutation topology on G is Hausdorff if and
only if the action of G on Y is faithful (faithful means that the only element of G
that fixes all the points in Y is the identity). Moreover, G is totally disconnected if
and only if the action is faithful.

When G is a permutation group on Y , that is, G acts faithfully on Y , one can
think of G as a subgroup of Sym(Y ), the group of all permutations of Y . We say
that G is a closed permutation group if it is a closed subgroup of Sym(Y ), where
Sym(Y ) has the permutation topology.

Let us now turn the tables and assume that G is a topological group and U a
compact open subgroup of G. Define Y = G/U . Let x=U ∈ Y , that is, x is equal
to the cosetU . Thus Gx =U . Suppose F = {y1, . . . ,yn} is a finite subset of Y and
g1, . . . ,gn are elements in G such that gix= yi. Then

G(F) =Gy1 ∩ · · ·∩Gyn = (g1Gxg−11 )∩ · · ·∩ (gnGxg−1n )

= (g1Ug−11 )∩ · · ·∩ (gnUg−1n ).

This implies that in the permutation topology on G with respect to the action of G
on Y = G/U , all the elements in the neighbourhood basis of the identity are open
in the given topology on G. Therefore the permutation topology is contained in
the topology on G. The permutation topology can be different from the topology
on G. For instance because the permutation topology does not separate points in
K =

⋂
g∈G gUg−1, the kernel of the action of G on Y . Note that for every y ∈ Y

the orbit Gxy =Uy is finite. This is so because, if g is an element of G such that
gx= y thenU ∩gUg−1 is an open subgroup of the compact subgroup U and thus

|Gxy| = |Gx : (Gx∩Gy)| = |U : (U ∩gUg−1)| < ∞.

Therefore, all suborbits in the action of G on Y are finite.
Compactness has a very natural interpretation in the permutation topology as

shown in the following lemma. A subset of a topological space is said to be rel-
atively compact if it has compact closure. The following lemma was formulated
by Woess ([60, Lemma 2]) for automorphism groups of locally finite connected
graphs, but it holds in our more general setting as well where it is not assumed
that the action of the group is faithful.

Lemma 1 ([60, Lemma 2]) Let G be a totally disconnected locally compact group
and U a compact open subgroup of G. Set Y =G/U. A subset A of G is relatively
compact in G if and only if the set Ax is finite for every x in Y .

Furthermore, if A is a subset of G and Ax is finite for some x in Y then Ax is
finite for all x in Y .

Turning back to the case when G is a permutation group on Y , we notice that
G is closed in the permutation topology of Sym(Y ) if and only if Gx is closed in
Sym(Y ). (It is obvious that if G is closed in Sym(Y ) then Gx is also closed. For
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the reverse implication assume that f is an element in Sym(Y ) that is contained
in the closure of G. Since the set U = {g ∈ Sym(Y ) | g(x) = f (x)} is an open
neighbourhood of f it must contain an element from G. Suppose g ∈ G such that
g(x) = f (x). If V is some open neighbourhood of f in Sym(Y ) then U ∩V is an
open neighbourhood of f that intersects gGx. But the the set gGx is closed and
thus g ∈ gGx ⊆ G. Hence G is closed.) It is easy to show that if G is a closed
permutation group and all the suborbits of G are finite then Gx is compact and G
is a totally disconnected locally compact group (see [60, Lemma 1]).

2 Rough Cayley graphs

Definition 1 Let G be a topological group. A connected graph X is said to be a
rough Cayley graph of G if G acts transitively on X and the stabilizers of vertices
are compact open subgroups of G.

When G is a topological group with a compact open subgroup U then one
can construct a rough Cayley graph in the following fashion which resembles the
construction of the ordinary Cayley graph of a group: Suppose G is a topological
group and U a compact open subgroup. For a subset S of G form the ordinary
Cayley graph of G with respect to S. Then define X as the graph that has vertex
set G/U and two distinct left cosets xU and yU are adjacent if there are elements
g ∈ xU and h ∈ yU such that g and h are adjacent in Y . The natural action of G on
the set of left cosets ofU gives an action of G on the graph X .

Conversely, suppose X is a rough Cayley graph of a topological groupG. LetU
be the stabilizer of a vertex x in X . Find a family {gi}i∈I of elements from G such
that {gi(x) | i∈ I} equals the set of neighbours of x in X . Set S=U∪{gi(x) | i∈ I}
and defineY as the ordinary Cayley graph ofGwith respect to S. Then the quotient
graph of Y with respect toU (as defined in the previous paragraph) is equal to X .

In Sections 3 and 4 it is shown that when the group G is a compactly generated
totally disconnected locally compact group then a rough Cayley graph carries in-
formation about the group in much the same way as an ordinary Cayley graph of
a finitely generated group does.

Theorem 1 Let G be a totally disconnected locally compact group. Then G has a
connected locally finite rough Cayley graph if and only if G is compactly gener-
ated.

A more detailed version of this theorem (see below) can be found in [39].
There the immediate purpose was to show that the subgroup of FC−-elements in
a compactly generated totally disconnected locally compact group is closed. Here
the aim is a general investigation of the relationship between the group and the
graph we construct.

Theorem 1+([39, Corollary 1]) Let G be a totally disconnected compactly
generated locally compact group. Then there is a locally finite connected graph X
such that:

(i) G acts as a group of automorphisms on X and is transitive on VX;
(ii) for every vertex v in X the subgroup Gv is compact and open in G;
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(iii) if Aut(X) is equipped with the permutation topology then the homomorphism
π :G→Aut(X) given by the action of G on X is continuous, the kernel of this
homomorphism is compact and the image of π is closed in Aut(X).

Conversely, if G acts as a group of automorphisms on a locally finite connected
graph X such that G is transitive on the vertex set of X and the stabilizers of the
vertices in X are compact and open, then G is compactly generated.

We will give two different constructions of the graph X in the first half of the
Theorem 1+ above. The first one follows the construction used in [39], whereas
the second one uses the ordinary Cayley graph of G with respect to some compact
generating set and is related to the concept of a topological graph from Abels’
paper [1] (this relationship will be discussed in Section 3.6). In the following, let
G be a compactly generated topological group with a compact generating set S
and a compact open subgroup U .

The first construction is based on the following Lemma.

Lemma 2 (Cf. [39, Lemma 2]) Let G be a compactly generated totally discon-
nected locally compact group. Let U be a compact open subgroup of G. Then
there is a finite set T = {h1, . . . ,hn} such that H = 〈h1, . . . ,hn〉 acts transitively
on the set of left cosets G/U. Furthermore, every element in G can be written as
hi1hi2 · · ·hiku where u ∈U.

The set T can be found as follows. The left cosets ofU form an open covering
of a compact generating set S. Hence there is a finite subcovering consisting, say,
of U,g1U, . . . ,gkU . Each double coset UgiU is compact and the set W = U ∪
(Ug1U)∪ · · ·∪ (UgkU) is thus also compact. Hence it is possible to find finitely
many elements h1, . . . ,hn, none of which is contained in U , such that U ∪h1U ∪
· · ·∪hnU =W . Set T = {h1, . . . ,hn}. ThatUS⊆W = TU follows from the proof
of Lemma 2 in [39].

Definition 2 Let G be a compactly generated totally disconnected locally com-
pact group. A compact open subgroup U together with a finite set T as described
in Lemma 2 above is said to form a good generating set.

Construction 1. The graph X is defined such that the vertex set is G/U and the
edge set is G{v,h1v}∪ · · ·∪G{v,hnv}, where G{v,hiv} denotes the orbit of the set
{v,hiv} under the diagonal action of G. The group G acts transitively as a group of
automorphisms on X . It follows from [39, Lemma 1] that the graph X is connected.
The orbit of hiv under Gv is finite since |Gv : Gv,hiv| is finite. Hence the graph X is
locally finite.

Construction 2. Form the Cayley graph Cay(G,S) of G with respect to a compact
generating set S. The left regular action of G on itself gives us a transitive action
of G on Cay(G,S). The left cosets ofU form the classes of an equivalence relation
on the vertices of Cay(G,S) that is preserved by the action of G. Define X as the
quotient graph of Cay(G,S) with respect to this equivalence relation. The vertices
of X are the left cosets of U . Two vertices g0U and h0U in X are adjacent if there
are elements g in g0U and h in h0U such that h = gs or h = gs−1 for some s in
S. Since S is a generating set for G, the graph Cay(G,S) is connected and thus
the quotient graph X is also connected. A vertex gU in X which is the neighbour
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of the vertex U must intersect US∪US−1. This latter set is compact because a
set that is the product (in the group G) of two compact sets is compact. The set
US∪US−1 can thus be covered with finitely many left cosets ofU andU is hence
only adjacent to finitely many vertices in X . Since X is a transitive graph, it follows
that X is locally finite.

Assume that G acts transitively on a locally finite connected graph X such that
the stabilizer of a vertex v is a compact open subgroup U of G. (For instance, G
could be the automorphism group of a transitive graph X endowed with the per-
mutation topology. We identify the vertex set of X with G/U and then choose
a finite set {g1, . . . ,gn} of group elements such that {g1v, . . . ,gnv} is the set of
neighbours of v. The graph X is the same as the graph we get in Constructions 1
and 2 using the compact open subgroup U and T = {g1, . . . ,gn}. Thus if X is a
rough Cayley graph for a compactly generated totally disconnected locally com-
pact group G then there is a compact open subgroupU and a finite set T such that
X = RCay(G,U,T ).

Every connected locally finite transitive graph is a rough Cayley graph of its
automorphism group. But, not every rough Cayley graph is a Cayley graph of
some group, since there are examples of infinite transitive connected locally finite
graphs that are not isomorphic to a Cayley graph of some groups, e.g. [7].
Notation. A rough Cayley graph of G constructed above by using a good generat-
ing set consisting of a compact open subgroup U and a finite set T is denoted by
RCay(G,U,T ).
Remark 1 Constructions such as described above have been widely used. The first
instance is in a paper from 1964 by Sabidussi [47] where it is shown how a finite
transitive graph can always be described as a quotient of a Cayley graph.

In order for this construction to be truly useful in group theory we would like to
show that the choice of the subgroupU and the finite set T has only a limited effect
on the properties of RCay(G,U,T ). The concept of quasi-isometry was introduced
by Gromov [17] and has been widely used and studied since.
Definition 3 Two metric spaces (X ,dX) and (Y,dY ) are said to be quasi-isometric
if there is a map ϕ : X → Y and constants a≥ 1 and b≥ 0 such that for all points
x1 and x2 in X

a−1dX (x1,x2)−a−1b≤ dY (ϕ(x1),ϕ(x2)) ≤ adX (x1,x2)+ab,
and for all points y ∈ Y we have

dY (y,ϕ(X)) ≤ b.
A map ϕ between two metric spaces satisfying the above conditions is called a
quasi-isometry.

Two connected graphs X and Y are called quasi-isometric if (VX ,dX ) and
(VY,dY ) are quasi-isometric. Note that dX(x1,x2) ≥ 1 for all distinct vertices x1
and x2. It is worth noting that in the case of connected graphs this implies that the
definition of quasi-isometry can be simplified by replacing the first inequality with

a−1dX (x1,x2)−a−1b≤ dY (ϕ(x1),ϕ(x2)) ≤ adX (x1,x2).
Being quasi-isometric is an equivalence relation on the class of metric spaces.



Analogues of Cayley graphs 9

Theorem 2 Let G be a compactly generated totally disconnected locally com-
pact group. Any two connected locally finite rough Cayley graphs of G are quasi-
isometric.

It is convenient to have an explicit description of a quasi-isometry that is in
some sense canonical. Suppose X1 = RCay(G,U1,T1) and X2 = RCay(G,U2,T2)
are rough Cayley graphs of G (recall that every rough Cayley graph can be pre-
sented in this way). The vertex sets of X1 and X2 can be identified with G/U1 and
G/U2, respectively. Let H1 be a set of representatives of the left cosets of U1 in
G. Define a map ψ :VX1 →VX2 such that if v= hU1 in VX1, where h ∈ H1, then
ψ(v) = hU2 ∈ VX2. Using the map ψ we give a more explicit version of Theo-
rem 2. In particular we prove that ψ is quasi-co-variant with the actions of G on
X1 and X2. That is, there is a constant c such that dX2(ψ(gv),gψ(v)) ≤ c for all
v ∈VX1.

Theorem 2+ Let G be a compactly generated totally disconnected locally
compact group. Suppose X1 = RCay(G,U1,T1) and X2 = RCay(G,U2,T2) are
rough Cayley graphs of G. The map ψ defined above is a quasi-isometry and
there is a constant c such that for every vertex v in X1 and every element g in G
we have

dX2(gψ(v),ψ(gv)) ≤ c.

Proof (Theorem 2+.) The proof is split up into three cases depending on the rela-
tionship betweenU1 andU2.

Case 1. Assume thatU1 =U2
Under this assumption we can identify the vertex sets of the two graphs and

the map ψ defined above becomes the identity map.
Because G only has finitely many orbits on the edges of X1 there is a constant

a such that whenever v and u are neighbours in X1 then dX2(v,u)≤ a. By choosing
a large enough, we may also assume that dX1(v,u) ≤ a for any vertices v and u
which are adjacent in X2. From this it follows that for any pair of vertices v and u
we have

1
a
dX1(v,u) ≤ dX2(v,u) ≤ adX1(v,u).

Thus X1 and X2 are quasi-isometric. In this case, ψ is the identity map. Hence
dX2(gψ(v),ψ(gv)) = 0 and ψ is co-variant with the action of G.

Case 2. Assume that U1 ≥ U2. The left cosets of U1 give us a G-invariant
equivalence relation ∼ on the vertices of X2 (two cosets ofU2 belong to the same
∼-class if they are both contained in the same U1 coset). Since U2 is an open
subgroup of the compact group U1, we see that |U1 :U2| < ∞ and the ∼-classes
are finite. We can identify the vertex set of the quotient graph X3 = X2/∼ with
the vertex set of X1. By the first case above, the identity map ψ1 : X1 → X3
is a co-variant quasi-isometry and there is a constant a such that 1adX1(v,u) ≤
dX3(ψ1(v),ψ1(u)) ≤ adX1(v,u) for every pair v and u of vertices in X1. Define a
map ψ2 : X3 → X2 such that ψ2(hU1) = hU2 where h is in H1. Let c denote the
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diameter of the ∼-classes in X2. Then for every pair of vertices v,u in X3 the fol-
lowing inequalities hold,

dX3(v,u) ≤ dX2(ψ2(v),ψ2(u)) and dX2(ψ2(v),ψ2(u)) ≤ (c+1)dX3(v,u).

For every pair of vertices v,u in X1 this implies,

dX3(ψ1(u),ψ1(v)) ≤ dX2(ψ2ψ1(u),ψ2ψ1(v))

and
dX2(ψ2ψ1(u),ψ2ψ1(v)) ≤ (c+1)dX3(ψ1(u),ψ1(v)).

Set ψ = ψ2 ◦ψ1. Then

1
a
dX1(u,v) ≤ dX3(ψ1(u),ψ1(v)) ≤ dX2(ψ(u),ψ(v))

≤ (c+1)dX3(ψ1(u),ψ1(v)) ≤ a(c+1)dX1(u,v),

and therefore ψ is a quasi-isometry from X1 to X2. Suppose v= hU1 is a vertex in
X1 and g is an element of G. We write h′U1 = ghU1 where h and h′ are in H1. Then
ψ(gv) = h′U2 and gψ(v) = ghU2. Both h′U2 and ghU2 belong to the same∼-class
and thus dX2(gψ(v),ψ(gv))≤ c.

Case 3. Let us now look at the general case. Set U3 =U1 ∩U2. Define X3 as
a rough Cayley graph of G with respect to U3 and some finite set T3 as described
in Construction 1. Define a map ψ1 : X1 → X3 such that if v= hU1, with h in H1,
then ψ1(v) = hU3. Let H3 denote a set of coset representatives ofU3. Then define
ψ2 : X3 → X2 such that if v= hU3, where h ∈ H3, then ψ2(v) = hU2 (note that ψ2
does not depend on the choice of coset representatives in H3). The map ψ2 is a
quasi-isometry. It is also worth noting that ψ2 is co-variant with the action of G.
Because both ψ1 and ψ2 are quasi-isometries we can conclude that ψ =ψ2 ◦ψ1 is
a quasi-isometry. Since ψ2 is co-variant with the action of G, we see that gψ(v) =
g(ψ2 ◦ψ1(v)) = ψ2(gψ1(v)). We know from Case 2 that there is a constant c1
such that dX3(gψ1(v),ψ1(gv)) ≤ c1 for all vertices v in X1. Since the map ψ2 is an
quasi-isometry we conclude that there is a constant c such that

dX2(gψ(v),ψ(gv)) = dX2(ψ2(gψ1(v)),ψ2(ψ1(gv))) ≤ c.

Remark 2 (i) We can also ask about the effect of the particular choice of a set
of coset representatives when constructing ψ . Suppose θ and θ ′ are two quasi-
isometries from X1 to X2, constructed with respect to different choices of coset
representatives. Then θ(v) and θ ′(v) are vertices in X2 corresponding to two left
U2 cosets that both intersect the same left U1 coset. There are only finitely many
left U2 cosets that intersect a given left U1 coset. Suppose h1U2, . . . ,hkU2 is the
collection of all the cosets that intersectU1 then gh1U2, . . . ,ghkU2 is the collection
of all the cosets that intersect gU1. When we consider the left cosets ofU2 as ver-
tices in X2 we see that the diameter in X2 of cosets that intersect a given left coset
ofU1 is always the same. Hence there is a constant c such that dX2(θ(v),θ ′(v))≤ c
for all vertices v in X1.

(ii) In the construction of a rough Cayley graph and the proof of Theorem 2+

we only use the property of compact open subgroups that any two such subgroups
U1 andU2 are commensurable (i.e.U1∩U2 has finite index in bothU1 andU2) and
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that a compact open subgroups is commensurable with its conjugates. Suppose
G is a group acting transitively on two locally finite connected graphs X1 and
X2. Furthermore, assume that for all v1 in VX1 and all v2 in VX2, the subgroups
U1 = Gv1 and U2 = Gv2 are commensurable. Then the same argument as in the
proof above shows that the graphs X1 and X2 are quasi-isometric.

Theorem 3 Let G be a totally disconnected locally compact group. Suppose G
acts on a connected locally finite graph X such that the stabilizers of vertices are
compact open subgroups and G has only finitely many orbits on VX. Then G has
a locally finite rough Cayley graph X ′ which is quasi-isometric to X.

Proof Choose some vertex v in X and denote the orbit of v by A. Since G has only
finitely many orbits on the vertex set of X there is a number k such that for each
vertex u in X there is some vertex in A in distance at most k from u. Construct
a new graph Y such that Y has the same vertex set as X and two vertices u and
u′ are adjacent in Y if and only if dX (u,u′) ≤ 2k+ 1. The graph Y is also locally
finite and the group G acts on Y . Let X ′ denote the subgraph of Y spanned by A.
Suppose u and u′ are some vertices in X ′. Since the graph X is connected there is
a path u0 = u,u1, . . . ,un−1,un = u′ in X . For each vertex ui we can find a vertex vi
in A such that dX(vi,ui) ≤ k and

dX (vi,vi+1) ≤ dX(vi,ui)+dX(ui,ui+1)+dX(ui+1,vi+1) ≤ 2k+1.

Either vi = vi+1, or vi and vi+1 are adjacent inY . From the sequence u,v1, . . . ,vn−1,u′
we can thus get a path in X ′ from u to u′. Therefore X ′ is a connected locally fi-
nite graph and G acts transitively on X ′. It follows from the construction that X ′ is
quasi-isometric to X .

The following Corollary is proved by using Theorem 3 in combination with
the latter part of Theorem 1+.

Corollary 1 Let G be a totally disconnected locally compact group. Suppose G
acts on a connected locally finite graph X such that the stabilizers of vertices are
compact open subgroups and G has only finitely many orbits on VX. Then G is
compactly generated.

LetH be a subgroup ofG. The quotient topology onG/H is the finest topology
such that the projection from G to G/H is continuous. A subset {gH | g ∈ A} of
G/H, A⊂G, is open, if and only if AH is open inG. A subgroup H of a topological
group G is said to be cocompact if the quotient space G/H is compact. Suppose G
is a totally disconnected locally compact group acting transitively on a setΩ such
that the stabilizers of points in Ω are compact open subgroups of G. It is shown
in [38, Lemma 7.5] and [42, Proposition 1] that a subgroup H of G is cocompact
if and only if H has only finitely many orbits on Ω . The first part of the corollary
below is well known, and is also true without the assumption that the group G is
totally disconnected.

Corollary 2 Let G be a compactly generated totally disconnected locally compact
group and H a closed cocompact subgroup of G.

(i) The subgroup H is compactly generated.
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(ii) If YH and YG be connected locally finite rough Cayley graph of H and G, re-
spectively, then YH and YG are quasi-isometric.

Proof The group H is in its own right a totally disconnected locally compact
group. Let X be some rough Cayley graph for G. Then H acts on X with only
finitely many orbits and the stabilizers of vertices are compact open subgroups of
H. By Theorem 3, H acts transitively on a connected locally finite graph X ′ such
that X ′ is quasi-isometric to X and the stabilizers inH of vertices in X ′ are compact
open subgroups of H. Theorem 1 says that the group H is compactly generated
and the graph X ′ is a rough Cayley graph of H. If YG is some rough Cayley graph
of G and YH is some rough Cayley graph of H then YG is quasi-isometric to X and
YH is quasi-isometric to X ′ and hence YG and YH are quasi-isometric to each other.

3 Ends of compactly generated groups

3.1 Preliminaries on ends and structure trees

3.1.1 Ends of graphs

There are various ways of defining the ends of a graph. The graph theoretical
approach is to define the ends as equivalence classes of rays. A ray in a graph X is
a sequence of distinct vertices v0,v1, . . . such that vi and vi+1 are adjacent for all i.
A line in X is a two way infinite sequence . . . ,v−1,v0,v1,v2, . . . of distinct vertices
such that vi and vi+1 are adjacent for all i.

Definition 4 ([18]) Let X be a connected graph. Two rays R1 and R2 in X are said
to be in the same end of X if there is a ray R3 in X which contains infinitely many
vertices from both R1 and R2.

If X is a tree then two rays are in the same end if and only if their intersection
is a ray.

It is easy to check that being in the same end is an equivalence relation on the
set of rays in X . The equivalence classes are called the ends of X and the set of
ends is denoted by ΩX .

Another way of phrasing the definition is to say that R1 and R2 are in the same
end if and only if for every finite set F ⊆ VX there is a path in VX \F from a
vertex in R1 to a vertex in R2. This in turn leads to yet another reformulation of the
definition: two rays R1 and R2 are not in the same end if and only if one can find a
finite set F of vertices and distinct components C1 and C2 of VX \F such that C1
contains infinitely many vertices of R1 andC2 contains infinitely many vertices of
R2. A locally finite connected graph X has more than one end if and only if there
is a finite set of vertices F such thatVX \F has more than one infinite component.

For a setC ⊆VX , we define the (vertex) boundary ∂C as the set of vertices in
VX \C that are adjacent to a vertex inC. The coboundary δC is defined as the set
of edges that have one end vertex inC and the other one in VX \C.

From Definition 4 it is evident that if a set of vertices C ⊆ VX with finite
boundary contains infinitely many vertices from some ray R then C also contains
infinitely many vertices from every ray in the same end as R. Thus it is reasonable



Analogues of Cayley graphs 13

to say that C contains the end that R is in. Let ΩC denote the set of ends that
are contained in C. If F ⊆ VX is finite and two ends ω and ω ′ are in different
components of VX \F then we say that F separates the ends ω and ω ′. In this
paper we are predominantly concerned with locally finite graphs. In a locally finite
graph any two distinct ends can also be separated by removing finitelymany edges.

Ends come in two basic sizes: thick and thin. An end ω is said to be thick if it
contains an infinite set of pairwise disjoint rays, and thin otherwise. For an end ω
define m1(ω) as the supremum of the cardinalities of sets of pairwise disjoint rays
in ω . Halin proves in [19] that if ω is thin then m1(ω) is finite.

One can also think of the ends as a boundary of the graph. This becomes
clearer if we give a topological definition. This definition can be traced back to
Freudenthal’s thesis in 1931, [12,13], and the ideas are adapted to locally finite
graphs in [14].

Now we add the assumption that X is locally finite. LetF denote the set of all
finite subsets of VX . For F ∈ F define CF as the set of all infinite components of
VX \F . If F1 and F2 are two elements ofF such that F1⊆F2 then there is a natural
projection CF2 →CF1 : a component of VX \F2 being mapped to the component of
VX \F1 that contains it. Thus {CF}F∈F ordered such that CF1 ≤ CF2 if F1 ⊆ F2.
Let Ω denote its inverse limit. Now we want to identify Ω and ΩX . An element
of Ω can be represented as a family (CF)F∈F such that if F1 ⊆ F2 thenCF2 ⊆CF1 .
Given an end ω ∈ΩX it is easy to find the corresponding element inΩ : for F ∈F

we let CF denote the component of VX \F that ω belongs to and then (CF)F∈F

does the trick. The next step is to show how we find the end corresponding to
an element in Ω . Let (CF)F∈F be an element in Ω . Take a strictly increasing
sequence F1 ⊂ F2 ⊂ . . . of finite subsets of VX such that VX =

⋃
i∈NFi. Then

{CFi}i∈N is a decreasing sequence. First of all it is clear that any two ends in X
are separated by some set Fi. Hence there is at most one end ω that belongs to all
of the sets CFi . However, one can find a ray that includes at least one vertex from
∂CFi for all i ∈ N. The end that this ray belongs to is contained in all the sets of
the sequence {CFi}i∈N. For a finite set F of vertices we find i such that F ⊆ Fi.
Then CFi ⊆CF and thus ω ∈CF . Hence ω is the only end that is contained in CF
for every F ∈ F .

The inverse limit construction gives a topology on ΩX . A basis of open sets
for this topology is given by sets ΩC where C ⊆ VX and C has finite boundary.
If we extend this topology to VX ∪ΩX then a basis of open sets is given by the
sets of the form C∪ΩC where C has finite boundary. When X is locally finite
then it is easy to see that VX ∪ΩX is compact with this topology and ΩX is
also compact. This topology on VX ∪ΩX is also compact without the assumption
of local finiteness, see [27, Theorem 1], but the set of ends ΩX alone without
the set of vertices VX is not compact in general. One can view VX ∪ΩX as a
compactification of VX .

The usefulness of the concept of quasi-isometry introduced in the last section
is that various structural properties are preserved under quasi-isometries. One of
these properties is the number of ends. Think now of the ends as a compactification
of the graph. If ψ is a quasi-isometry between two locally finite graphs X1 and X2
then ψ has a unique extension ψ : X1∪ΩX1 → X2∪ΩX2 that is continuous when
X1 ∪ΩX1 and X2 ∪ΩX2 are viewed as topological spaces. The restriction of ψ
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to ΩX1 is a homeomorphism Ψ : ΩX1 → ΩX2 (cf. [35, Proposition 1] and [27,
Theorem 6]).

Remark 3 It is a common theme in graph theory to study what happens if some
vertices are removed from the graph. The end concept defined above is a natural
extension of these ideas to infinite graphs. Instead of removing a finite set of ver-
tices we could as well remove a finite set of edges or a set of vertices which is
bounded with respect to natural metric of the graph. Then we obtain edge ends
and metric ends, respectively. These concepts are compared in [27]. In locally
finite graphs, these different end concepts coincide.

3.1.2 Automorphisms and ends

In this section we assume that X is a connected locally finite graph. Local finite-
ness is not necessary for all the results described but it simplifies the discussion,
and our interest is in applications to locally finite rough Cayley graphs.

It is clear from the definition of ΩX that an automorphism of X has a natural
action on ΩX . As shown by Halin in his fundamental paper [20], the action on the
ends gives vital clues to how the automorphism behaves. The same is also evident
from Tits’ paper [54], where group actions on infinite trees are studied. Halin
shows how automorphisms of X can be divided up into three disjoint classes. For
an automorphism g of X one of the following holds:

(i) g leaves invariant some non-empty finite subset of VX ;
(ii) g fixes precisely one thick end and does not satisfy (i);
(iii) g fixes precisely two thin ends and does not satisfy (i).

Automorphisms that satisfy (ii) or (iii) are often called translations. For a transla-
tion g it is possible to find a line in X such that some power of g that acts like a
non-trivial translation on that line. If X is a tree then g will act like a translation
on the line. Automorphisms that satisfy (i) are called elliptic, those that satisfy (ii)
are called parabolic and those that satisfy (iii) are called hyperbolic (or proper
translations).

It is simple to describe how one finds an invariant line in cases (ii) and (iii).
Suppose that g does not satisfy (i). Set n0 =mind(gk(v),v), where k is a non-zero
integer and v a vertex in X . Find k0 ∈N and v0 ∈VX such that d(gk0(v0),v0) = n0.
Then take a path P of length n0 from v0 to gk0(v0) and set L =

⋃
i∈Z gik0P. It is

obvious that L is an invariant infinite path and that gk0 acts like a translation on
L. The interesting thing proved by Halin (see [20, Theorem 7]) is the fact that L
is a line, i.e. that L consists of distinct vertices. Say the line L is the sequence
. . . ,v−1,v0,v1,v2, . . .. The ends that the rays v0,v−1, . . . and v0,v1, . . . belong to
are fixed by g, and these are the only ends fixed by g (see [20, Theorem 8]). If
g is parabolic then g fixes only one end of X and both rays belong to the same
end. In the case where g is hyperbolic the two rays will belong to distinct ends of
X . If we suppose that gk0(v0) = vl with l > 0 then the end that the ray v0,v1, . . .
belongs to is denoted by D(g). The end D(g) called the direction of g. The ray
v0,v−1, . . . belongs to the direction D(g−1). Note that if v is a vertex in X and g
is either parabolic or hyperbolic then the sequence gn(v) converges to D(g) in the
topology on VX ∪ΩX (see [59, Lemma 2.4]).
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Now one can ask for the existence of hyperbolic automorphisms in Aut(X).
This question is answered by the following result of Jung [24].

Theorem 4 (Cf. [24, Theorem 1]) Let X be a connected locally finite transitive
graph. Suppose C is an infinite subset of VX with infinite complement and finite
boundary. Then there is an element g ∈ Aut(X) such that gC ! C and g is a hy-
perbolic automorphism.

Not only does a transitive group of automorphisms of a locally finite graph
with more than one end contain hyperbolic elements, they are abundant. Theo-
rem 4 implies that in connected locally finite transitive graphs with more than one
end the directions of hyperbolic automorphisms are dense in ΩX , where ΩX has
the topology defined towards the end of Section 3.1.1. Pavone has shown that if in
addition there is no end fixed by the action of Aut(X) then the directions of hyper-
bolic elements are bilaterally dense in ΩX , i.e. ifU1 andU2 are disjoint open sets
inΩX then there is some hyperbolic automorphism g of X such thatD(g−1) ∈U1
and D(g) ∈U2 (see [45, Theorem 5]).

From Theorem 4 it can be deduced that if X has more than two ends then there
are no isolated points inΩX . As a consequence we obtain Theorem 5 below which
was proved by Hopf in [22] in the context of Freudenthal’s ends of locally compact
connected spaces, see [12,13]. For the case of vertex ends in non-locally finite
graphs see [20, Corollary 15], and for the case of metric ends see [29, Corollary
3.15] and [30, Theorem 4].

Theorem 5 An infinite connected locally finite transitive graph has either 1 or 2
ends, or ΩX is a Cantor set.

3.1.3 Structure trees

The fundamental results behind the theory of structure trees are from the book by
Dicks and Dunwoody [6, Chapter II], but the connections and uses of this theory
to study infinite graphs and group actions on such graphs are developed in [34]
and [53]. The survey paper [36] gives an overview of this technique and the main
results on group actions on graphs with infinitely many ends.

For a subset e⊆VX we set e∗ =VX \e. A cut (or more precisely an edge cut)
is a subset e⊆VX such that the coboundary δe of e is finite. A cut e is said to be
tight if both e and e∗ are connected subsets of X . Define BnX to be the Boolean
ring generated by all cuts c such that |δc|≤ n. We also defineBX as the Boolean
ring generated by all the cuts. All the elements inBX are cuts.

A set E of cuts is said to be a nested if for each choice of e, f ∈ E one of the
intersections

e∩ f , e∩ f ∗, e∗ ∩ f , or e∗ ∩ f ∗

is empty, (i.e. e⊆ f ∗, e⊆ f , e∗ ⊆ f ∗ or e∗ ⊆ f ). A nested set E is a tree set if for all
elements e, f ∈ E such that e⊆ f there are only finitely many elements g∈ E such
that e ⊆ g ⊆ f . A tree set E is called undirected if whenever e ∈ E then e∗ ∈ E.
A tight cut e is called a Dunwoody-cut (or a D-cut) if E = Ge= {ge | g ∈ G} is a
tree set. Furthermore, we say that a tree set is tight if every element is a tight cut.
In their book [6] Dicks and Dunwoody prove the following remarkable theorem.
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Theorem 6 ([6, Theorem II.2.20]) Let X be a connected graph and G≤ Aut(X).
Then there is a chain of G-invariant undirected tree sets E1 ⊆E2 ⊆ . . . inBX such
that all elements in En are tight and En generates BnX for all n.

From a tight undirected G-invariant tree set E in BX we can build a directed
tree −→T =

−→T (E). This construction is first described in [8, Theorem 2.1]. It is also
treated in [6, Section II.1], [28], [36] and [53]. The reader is referred to those
references for more details and proofs.

For elements e, f ∈ E we define f ! e if f ! e and if f ⊆ g⊆ e then e= g or
f = g. Define a relation∼ on E such that e∼ f if e= f or f ∗ ! e. In the proof of
[8, Theorem 2.1] it is shown that∼ is an equivalence relation. The vertex set of −→T
is the set of ∼-classes. There is a one-to-one correspondence between the edges
of −→T and the elements of E: An element e ∈ E corresponds to a directed edge e
from the ∼-class of e∗ to the ∼-class of e. Hence we may consider elements of
E as edges of −→T . We have already defined an inversion ∗ on the set E and we
can also define an inversion ∗ on E−→T so that if e= (α,β) is an edge in E−→T then
e∗ = (β ,α). We see that if e ∈ E and e = (α,β) of −→T then e∗ corresponds to
the edge e∗ = (β ,α). Furthermore, e, f ∈ E correspond to edges e = (α,β) and
f = (β ,γ) in −→T if and only if f ! e. Define a partial ordering on E−→T such that
e ≥ f if there is a path of distinct vertices α0,α1, . . . ,αn−1,αn in T such that e =
(α0,α1) and f = (αn−1,αn). The tree set E is also partially ordered with respect
to inclusion. From the construction it is clear that the two partial ordered sets E
and E−→T are order isomorphic. Let T denote the undirected graph which has the
same vertex set as −→T and {α,β} is an edge if and only if (α,β) is an edge in −→T .
The directed graph −→T is a tree in the sense that the undirected graph T is a tree.
The tree −→T =

−→T (E) is called a structure tree of X . Note that structure trees are
directed graphs.

Our group G acts on the tree set E and the equivalence relation ∼ is invariant
under this action. Hence G acts both on −→T and T . The space of ends Ω−→T of
the directed graph −→T is defined as being the same as the space of ends of the
undirected graph T .

Next we define maps ϕ : VX → V−→T and Φ : ΩX → VT ∪Ω−→T . Think of an
element e in E as a directed edge e = (α,β) in the tree −→T . We say that e points
towards a vertex γ in −→T if γ is in the same component of −→T \{e,e∗} as β . That
is, a path from α to γ must contain β . Let v be a vertex in X . We locate ϕ(v) by
the property that all the elements in E that contain v should point towards ϕ(v),
when they are viewed as edges of −→T . Suppose that e and f are elements in E and
e = (α,β) and f = (β ,γ) are the corresponding edges in −→T . If ϕ(v) = β then
v ∈ e but v (∈ f . In fact, e is minimal in E subject to containing v and f is maximal
subject to not containing v. From this we can observe that for v,u ∈VX it follows
that ϕ(v) (= ϕ(u) if and only if there is an element e ∈ E such that e contains
precisely one of the vertices v and u (i.e. v and u belong to different components
of X when the edges in δe have been removed). The group G acts on both VX and
V−→T , and the map ϕ commutes with these actions.

An element e∈E thought of as a directed edge e= (α,β) in the tree−→T , points
towards an end ω in −→T if ω is in the same component of −→T \ {e,e∗} as β . The
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map Φ is defined in a similar way as ϕ: those elements in E−→T that contain an end
ω of X should point towards Φ(ω) when considered as edges in −→T . For an end
ω we may get an infinite sequence of decreasing cuts in E, all of which contain
ω . This sequence defines a ray R in −→T and we define Φ(ω) as the end of −→T that
R belongs to. If there is no such sequence then there is a vertex α in V−→T such
that any cut in E that points to α contains ω . In this case we set Φ(ω) = α . The
vertices of −→T that are in the image of Φ are recognizable as those vertices that
have infinite degree or whose pre-image under ϕ is infinite, [34, Lemma 4]. If
Φ(ω) is a vertex α ∈ V−→T then we say that the end ω lives inside the vertex α .
As for vertices of X , we see that two ends of X have distinct images under Φ if
there is some element e ∈ E such that δe separates the two ends. Take a tree set E
that generatesBnX . Then, if some two ends can be separated by a set containing
n or fewer edges then there will be an element e ∈ E such that δe separates the
ends (i.e. the ends belong to different components of X when the edges in δe have
been removed). Again it is clear that the map Φ commutes with the actions of G
on ΩX and V−→T ∪ΩT .

The following Lemma describes the relationship between the action of G on
X and the action of G on −→T .

Lemma 3 ([34, Corollary 1]) Let X be a connected locally finite graph and −→T =
−→T (E) some structure tree of X, where E is a tight undirected tree set.

(i) If g ∈ Aut(X) acts like a translation on −→T then g acts like a translation on X
and g is hyperbolic.

(ii) If g ∈ Aut(X) is a translation (a parabolic or hyperbolic automorphism of X)
then either g acts as a translation on −→T or there is a unique vertex of −→T fixed
by g and that vertex has infinite degree.

(iii) If g ∈ Aut(X) is hyperbolic then there is a tight undirected tree set Eg such
that g acts as a translation on −→T (Eg).

3.1.4 Ends of groups

The number of ends of a finitely generated group G is defined as the number of
ends of a Cayley graph of G with respect to some finite generating set. As will be
explained in the next section, the choice of a finite generating set will not affect
the outcome.

From Theorem 5 it follows that a Cayley graph of a finitely generated group
either has no ends, one end, two ends or infinitely many ends. The structure
of groups with more than one end is described in the following theorems. The
first one, which is a conjunction of results of Hopf [22, Satz 5] and Wall [56,
Lemma 4.1], gives a clear description of the groups that have precisely two ends.

Theorem 7 Let G be a finitely generated group. Then the following are equiva-
lent:
(i) G has precisely two ends;
(ii) G has an infinite cyclic subgroup of finite index;
(iii) G has a finite normal subgroup N such that G/N is either isomorphic to the

infinite cyclic group or to the infinite dihedral group.
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Definition 5 A group G is said to split over a subgroup H if G can be decomposed
into a non-trivial amalgamated free product A ∗H B of subgroups A and B (non-
trivial means that H (= A and H (= B), or if G is an HNN-extension A∗H x, where
x denotes the stable letter.

Theorem 8 (Stalling’s Ends Theorem, [52]) Suppose G is a finitely generated
group with more than one end. Then G splits over a finite subgroup.

This theorem can be deduced from the general theory of structure trees (de-
scribed in the previous section) with the aid of Bass-Serre theory of groups acting
on trees (see [50]). In Bass-Serre theory it is usually assumed that a group G acts
on a tree T without inversion, meaning that no element in the group transposes a
pair of adjacent vertices. From the Bass-Serre theory of groups acting on trees we
need the following.

Theorem 9 (Cf. [50, Theorem 6]) Suppose G is a group acting without inversion
on a tree T such that G has just a single orbit on the edges of T . Suppose {u,v}
is an edge in T . If G has two orbits on the vertices of T then G=Gu ∗Gu,v Gv. If G
has just one orbit on the vertices of T then G can be written as a HNN-extension
Gu ∗Gu,v x.

The condition that the group acts without inversion is not a serious restriction,
because by replacing T with its barycentric subdivision (adding a new vertex at
the “middle” of each edge) we are sure to get an action without inversion.

Suppose G acts transitively on a locally finite connected graph with infinitely
many ends. We find a Dunwoody-cut e of X and define −→T as the structure tree of
X with respect to the tree set E = Ge∪Ge∗. The group G acts on −→T and also on
the undirected tree T , but we can not be sure that the action is without inversion.
Suppose e corresponds to an edge {α,β} in T . If G acts on T without inversion
then G=Gα ∗Ge Gβ , or G is an HNN-extension Gα ∗Ge x. If G acts with inversion,
i.e. there is an element in g such that gα = β and gβ = α , then G = Gα ∗Ge H
where H is the setwise stabilizer of the set {α,β}. This says that G splits over a
group Gδe where e is some Dunwoody-cut in G and Gδe denotes the subgroup of
all elements in G that leave the set δe invariant. Note that if e is a cut then the set
Ae of vertices in e that are adjacent to vertices in e∗ is the set ∂ (e∗). The setwise
stabilizer H1 of e in G is equal to the intersection of the setwise stabilizers of ∂e
and ∂ (e∗). Let H2 denote the stabilizer of a vertex in X . Both ∂e and ∂ (e∗) are
finite so H1 is commensurable with H2, meaning that both indices |H1 : H1∩H2|
and |H2 : H1∩H2| are finite.

With further reference in mind we state the outcome of the considerations
above.

Corollary 3 Let G be a group acting transitively on a locally finite connected
graph X with more than one end. Then G splits over a subgroup commensurable
with the stabilizer in G of a vertex in X.

3.2 Stallings’ Ends Theorem for rough ends

The theorem from Section 2 that any two rough Cayley graphs of a compactly
generated totally disconnected locally compact group are quasi-isometric and the
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result from Section 3.1.1 that locally finite graphs which are quasi-isometric have
homeomorphic end spaces allow us to use rough Cayley graphs to define ends for
compactly generated totally disconnected locally compact groups.

Definition 6 The space of rough ends of a compactly generated totally discon-
nected locally compact group G is the end space of a rough Cayley graph of G.

The following corollary to Theorem 3 links together the rough ends of a com-
pactly generated totally disconnected locally compact group G and the rough ends
of a closed cocompact subgroup.

Corollary 4 Let G be a compactly generated totally disconnected locally compact
group and H a closed cocompact subgroup. Then the spaces of rough ends of G
and H are homeomorphic. In particular H has the same number of rough ends as
G.

Proof By Corollary 2 a rough Cayley graph of G is quasi-isometric to a rough
Cayley graph of H. Hence they must have homeomorphic spaces of rough ends.

Let X1 and X2 be rough Cayley graphs for G. Suppose ψ : X1 → X2 is a quasi-
isometry like in Theorem 2+. Let ψ and Ψ be as described at the end of Sec-
tion 3.1.1. Because ψ is continuous, we see that if a sequence of vertices vi in
X1 converges to an end ω in ΩX1 then the sequence ψ(vi) converges to the end
ψ(ω) =Ψ(ω) in ΩX2. The action of G on X1 induces an action of G on ΩX1.
Hence gvi converges to gω . Similarly, the sequence gψ(vi) in X2 must converge
to the end gΨ(ω) in ΩX2 and the sequence ψ(gvi) must converge to the end
Ψ(gω). Because there is a constant c such that dX2(gψ(vi),ψ(gvi)) ≤ c for all
i, we can conclude that the sequences gψ(vi) and ψ(gvi) converge to the same
end of X2. Thus gΨ(ω) =Ψ(gω) and the mapΨ is covariant with the action of
G. In this context one can also note that different choices of coset representatives
when constructing the map ψ do not affect the mapΨ . These considerations are
so fundamental in what follows that we state the results as a theorem.

Theorem 10 Let X1 and X2 be rough Cayley graphs for some compactly gen-
erated totally disconnected locally compact group. Let ψ : X1 → X2 be a quasi-
isometry as in Theorem 2+. There is a unique extension ψ :VX1∪ΩX1 →VX2∪
ΩX2 of ψ whose restrictionΨ to ΩX1 is a homeomorphism ΩX1 → ΩX2 which
is covariant with the actions of G on ΩX1 and ΩX2, i.e.Ψ(gω) = gΨ(ω) for all
ω ∈ΩX1 and g ∈ G.

Now we turn our attention to group theoretic properties related to rough ends.
Our aim is to show that a compactly generated totally disconnected locally com-
pact group with more than one rough end splits over some compact open subgroup,
and thus to derive an analogue of Stallings’ Ends Theorem.

LetG act transitively on a locally finite connected graph X with infinitelymany
ends. Then Dunwoody’s theory of structure trees yields an action on a directed
tree with infinitely many ends which has at most two orbits on the edges, and
consequently at most two orbits on the vertices. We will show how we also can go
the other way.
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If we start with an action of G on a tree T such that the stabilizers of edges are
compact open subgroups of G and G has only finitely many orbits on the edges
then we will show how T can be used to construct a tree set of Dunwoody-cuts of
some rough Cayley graph. In our discussion it is sometimes convenient to think of
T as a directed graph −→T . This is purely a formal device to ease the presentation.
The vertex sets of T and −→T are the same and each undirected edge {u,v} in T is
represented by two directed edges (u,v) and (v,u) in −→T . In the following we will
be discussing a tree set E, the set of edges E−→T of the directed tree −→T and ET
the set of edges of T . These sets are related and we will typically use e and f to
denote elements of E, for the corresponding elements of E−→T will be denoted with
e and f and e and f for the corresponding elements of ET .

Let u be a fixed vertex in T and let Eu denote the set of edges in T with u as an
end vertex. The set Ue, f of elements of G that map a given edge e of T to a given
edge f of Eu is open because the edge stabilizers are open. The set of elements
of G that map a given edge e of T to a an edge of Eu is thus open because it is
the union of the open setsUe, f for f ∈ Eu. Suppose {u,v} and {u,w} are distinct
edges in T . Both

V1 = {g ∈ G | g{u,v} ∈ Eu} and V2 = {g ∈ G | g{u,w} ∈ Eu}

are open subsets of G. Their intersection is an open set and Gu = V1∩V2. Hence
Gu is an open subgroup of G. (This conclusion is obviously also true if there is
only one edge in T with u as an end vertex.) Because Gu is an open subgroup it is
also a closed subgroup of G.

The stabilizer V of an edge {u,v} in T is a compact open subgroup of G.
BecauseGu is both open and closed, the subgroup Gu∩V is open and compact and
is equal to the stabilizer of the edge (u,v) in−→T . LetU denote some compact open
subgroup ofGu. Define X as RCay(G,U,S)whereU together with S= {s1, . . . ,sn}
form a good generating set. Let e = (v,w) be an edge in −→T . Remove the edge
{v,w} from T and the tree T splits into two subtrees Te and T(e)∗, where Te contains
w and Te∗ contains v. Define

ce = {gU | gu ∈VTe}⊂G/U =VX .

Note that c(e)∗ = VX \ ce = (ce)∗. The assumption that U ⊆ Gu guarantees that if
h ∈ gU then hu= gu.

Theorem 11 Let G be a compactly generated totally disconnected locally com-
pact group. Suppose G acts on a tree T such that the stabilizers of the edges are
compact open subgroups of G and G has only finitely many orbits on the edges of
T . Suppose −→T ,U,S,X and u are as above.

Then, for an edge e in −→T the set ce is a cut in X and it is possible to choose
S such that ce is connected. The set E = {ce | e ∈ E−→T } is a tree set. If the map
E−→T →E, e &→ ce is bijective and the sets ce are connected then

−→T is isomorphic to
the structure tree −→T (E). If T has an edge f such that both components of T \{ f }
contain infinitely many vertices from the orbit of the vertex u in T then X has more
than one end.
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Proof Our first task is to prove that ce is indeed a cut of X . This means we have
to show that δce is finite. By Lemma 1, each orbit of Ge, the stabilizer of the edge
e= (v,w) in −→T , on the edges of T is finite (note that T need not be locally finite)
and thus every orbit Ge on the vertex set of T is also finite. We split the proof of
the finiteness of δce up into two parts.

Define a graph Y such that the vertex set of Y is the same as the vertex set of
T but the edge set of Y is

EY = G{u,s1u}∪ · · ·∪G{u,snu}.

The group G acts on Y as a group of automorphisms. The distance in T between
the end vertices of edges in Y is bounded, because G has only finitely many orbits
on the edges of Y . We show that there are only finitely many edges in Y with one
end vertex in VTe and the other in VTe∗ . Suppose there are infinitely many edges
in Y with one end vertex in VTe∗ and the other in VTe. This would allow us to find
infinitely many edges {vi,wi} in EY with the following three properties:

(i) vi ∈VTe∗ and wi ∈VTe for all i,
(ii) all these edges are in the same G-orbit, and
(iii) dT (v,vi) = dT (v,v j) and dT (w,wi) = dT (w,wj) for all i and j.

The third item follows from the fact that if a=min{dT (u,siu)} then dT (vi,wi)≤ a
for all i and since vi ∈ T(e)∗ and wi ∈ Te there are only finitely many possibilities
for dT (v,vi) and dT (w,wi). An element in G that maps an edge {vi,wi} to an edge
{v j,wj} must fix the edge {v,w} in T . This leads to a contradiction since the
stabilizer of the edge {v,w} in G is compact and thus has only finite orbits on the
edges of T , and therefore the orbits on the vertices of T are also finite. Whence
there are only finitely many edges in Y with one end vertex in VTe∗ and the other
in VTe.

LetY ′ denote the subgraph spanned by the orbit of u underG. Both end vertices
of an edge in Y always belong to VY ′. Define a map θ : VX → VY ′ such that
θ(hU) = hu. It follows from the assumption that U ≤ Gu that θ is well defined.
The fibers of θ form a G invariant equivalence relation∼ on VX and the map θ is
covariant with the action of G on these equivalence classes. From the way X and
the edge set of Y are defined, it is clear that an edge in X is either mapped to an
edge of Y ′ or both end vertices are mapped to the same vertex of Y ′. Suppose there
were infinitely many edges in X with one end vertex in ce and the other in ce∗ .
These will be mapped to edges in Y ′ that have one end vertex inVTe and the other
in VTe∗ . There are only finitely many such edges. Infinitely many of the edges in
X with one end vertex in ce and the other in ce∗ would then be mapped to the
same edge e′ in Y , and, because G has only finitely many orbits on the edges of
X , infinitely many of these would belong to the same G-orbit. If f is an edge in X
and f and g f are both mapped by θ to the same edge e′ in Y then g ∈ Ge′ . Hence
the group Ge′ would have infinite orbits on the edges of X . But the stabilizer of
the edge e′ is a compact subgroup of G and would therefore have finite orbits on
the edges of X . We have reached a contradiction and conclude that there are only
finitely many edges in X with one end vertex in ce and the other one in ce∗ .

Let e now be some edge in −→T . It is not clear that ce is a connected subset of
X , but it is clear that ce has only finitely many connected components, because
δce is finite. Choose one vertex from each component of ce to get a collection of
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vertices v1, . . . ,vm. Now replace the graph X by the graph one gets by adding the
setsG{vi,v j} for i (= j to the set of edges in X . (One can also think of this in terms
of adding to the set S group elements ti j such that {U, ti jU} is in the same G-orbit
as {vi,v j} .) Note that this new graph is locally finite and the set ce is connected
and so are also all the cuts in the G-orbit of ce. The group G has only finitely many
orbits on the edges of T and thus only finitely many orbits on the cuts ce one gets
from T . Therefore one only needs to repeat the above construction finitely many
times for ce1 , . . . ,cek where e1, . . . ,ek are representatives for the orbits of G on the
edges of −→T to get a locally finite connected graph X such that ce is a connected
cut for every edge e in −→T .

Let E denote the set of all the cuts of X which we get in this way by removing
the edges of −→T . That E is a tree set follows from the construction, because the
ordering of E by inclusion mirrors the ordering of E−→T given by the tree, precisely
as in the relationship between a tree set of cuts and a structure tree. If this map is
bijective then it gives an isomorphism of the tree −→T and the structure tree −→T (E).
The last statement in the Theorem follows trivially because if {v,w} is such an
edge and e= (v,w) then both ce and the complement of ce contain infinitely many
vertices and hence X must have more than one end.

Remark 4 (i) If G is a finitely generated group then the theorem above says that
every action of G on a tree with finite edge stabilizers corresponds to a tree set of
Dunwoody-cuts of some ordinary Cayley graph for a finite generating set.

(ii) It is possible that two different edges in−→T give the same cut of X . Suppose
that e = (v,w) and e ′ = (v′,w′) are edges in −→T . The cuts ce and ce′ are equal if
and only if the trees Te and Te ′ contain precisely the same vertices from the orbit
of u under G. It is possible to “prune” the tree T to get a new tree that G acts on
where this situation does not arise. If e = (v,w) is an edge in −→T and Te contains
no vertex from the orbit Gu then we delete Te together with the edge {v,w} from
T . When all subtrees of this form have been deleted we are left with a new tree
T ′ containing the orbit of u under G. Note that the action of G on T restricts to
an action on T ′. It still may happen that there are edges e and e ′ in T such that
corresponding directed edges in −→T ′ give rise to the same cut in E in X , but that
must be because T \{e,e ′} has a component not including any vertices from Gu.
Because of the pruning already done we can conclude that all the vertices in this
component have degree 2. Hence there is a path v0,v1, . . . ,vk−1,vk in the tree T ′

that starts with the edge e and ends with the edge e ′ and all vertices in this path,
with the possible exceptions of v0 and vk, have degree 2. Throw out the vertices
v1, . . . ,vk−1 and put in a single edge {v0,vk}. When all such instances have been
treated then we are left with a tree T ′′ that G acts on and the action on this tree
gives rise to precisely the same cuts of X as the action on the original tree T but
now the map from the edges of −→T ′′ to the set of cuts is bijective. Hence T ′′ is
isomorphic to the structure tree.

Theorem 1 says that a totally disconnected locally compact group acting tran-
sitively on a connected locally finite graph with compact open stabilizers of ver-
tices is compactly generated. We use this result to prove that the stabilizer of a
vertex in a structure tree (as in Theorem 11) is compactly generated. To do so we
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use the following construction from [53, Section 7]. Let X be a graph and −→T a
structure tree of X with respect to some tree set consisting of tight cuts (i.e. each
cut is a connected subset of VX). Suppose G is a group acting transitively on X .
(Note that in [53, Section 7] the group action considered is the action of the full
automorphism group of X , but all the arguments hold true for any transitive group
action on X .) Given a vertex α in−→T we want to produce a connected subgraph Xα
of X such that Gα acts with finitely many orbits on Xα .

For an element e∈E (corresponding to an edge e of−→T ) and a natural number q
we define Rq(e) as the subgraph of X spanned by the vertices in e (where we think
of e as a cut of X) that are at distance less or equal to q from the vertex boundary
∂e of e in X . Using the property that e is connected we can clearly choose q so
large that the following condition (†) is satisfied:

(†) If P1, . . . ,Pr are pairwise edge-disjoint paths in e∪∂e between vertices in ∂e,
and all other vertices in these paths are contained in e then Rq(e)∪∂e contains
pairwise edge-disjoint paths P′1, . . . ,P′r such that P′i and Pi have the same end
vertices for all i = 1, . . . ,r and all vertices in the paths P′i apart from the end
vertices are in Rq(e).

Because G acts with only finitely many orbits on E−→T , we can find a number q
such that Rq(e) satisfies (†) for all e ∈ E

−→T . Let Xα be the subgraph of X induced
by the union of the set ϕ−1(α) and the vertices in Rq(e) for all e ∈ E−→T of the
form (α,β).

Because G has only finitely many orbits on E−→T , we know that Gα (the stabi-
lizer of α in G) has only finitely many orbits on the set of edges in −→T with initial
vertex α . Also note that the group Gα acts transitively on the vertices in ϕ−1(α).
The subgraph Xα of X is invariant underGα and, by the above,Gα acts on Xα with
only finitely many orbits. The ends of X that are mapped to α by the structure map
are in a natural correspondence to the ends of Xα . It is instructive to go through
the argument that shows this. Suppose R is a ray in an end ω that is mapped to
α . Suppose e= (α,β) is an edge in −→T and e is the corresponding cut in X . Then
the end ω does not lie in e, so e will at most contain finitely many disjoint finite
subpaths from R. The end vertices of these finite subpaths are all in ∂e. Now we
use property (†) to replace each of these finite paths with a path in Xα that has the
same end vertices. The resulting 1-way infinite path may have repeated vertices
but because the graph is locally finite this 1-way infinite path will contain a ray
R′ which is clearly also in the end ω . Using (†) one can also show that two rays
in Xα that belong to the same end of X must also belong to the same end of Xα .
Hence the end of Xα that R′ belongs to does not depend on the choice of the ray
R in ω and we have the promised correspondence between ends of X mapped by
the structure map to α and ends of Xα .

Theorem 12 Suppose G is a compactly generated totally disconnected locally
compact group and X is some rough Cayley graph of G. If −→T is a structure tree
of X then the stabilizers of edges in −→T are compact open subgroups of G and the
stabilizers of vertices in −→T are compactly generated subgroups of G that are both
closed and open in G.
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Proof An edge in −→T corresponds to a Dunwoody-cut e of X . A group element
stabilizing an edge in T must stabilize (setwise) the coboundary of a Dunwoody-
cut. The boundary δe is a finite set of edges and the stabilizer of each edge of X is
a compact open subgroup of G. Hence we see that the stabilizer of an edge in −→T
is a compact open subgroup of G.

Let us now look at the stabilizer of a vertex α in −→T . Suppose that e is an edge
in −→T that has α as one end vertex. Since Gα contains the compact open subgroup
Ge we conclude that Gα is a closed open subgroup of G. The group Gα acts with
finitely many orbits on the locally finite connected graph Xα with compact open
stabilizers of the vertices. By Corollary 1, we can conclude that Gα is compactly
generated.

Theorem 13 Let G be a compactly generated totally disconnected locally com-
pact group.

The group G splits over some compact open subgroup if and only if it has more
than one rough end.

More precisely, if G has more than one rough end then G = A ∗C B or G =
A∗C x where the subgroups A and B are compactly generated and open, and C is
a compact open subgroup.

Proof If some rough Cayley graph of G has more than one end then we get an ac-
tion of G on a tree such that the stabilizers of edges are compact open subgroups
of G and the stabilizers of vertices are closed open subgroups of G that are com-
pactly generated (by Theorem 12). Now we can refer to the Bass-Serre theory of
groups acting on trees to get the result.

To prove the latter part of the theorem we use the Bass-Serre theory to get
an action of G on a tree T with just one orbit on the edges and such that the
stabilizers of edges are conjugates of C. First suppose that G can be written as
an HNN-extension G = A ∗C x. Then G acts on a tree with just one orbit on the
vertices and clearly−→T is isomorphic to the structure tree we get from Theorem 11
and the result now follows from Theorem 12. Now suppose that G= A∗C B. Then
G has two orbits on the vertices of the Bass-Serre tree T . If −→T is isomorphic to
the structure tree we get from Theorem 11 then there is nothing more to do. But it
could happen that T is not isomorphic to the structure tree. This will only happen
when the vertices in one of the orbits on T have degree 2. Let us assume that B is
the stabilizer of vertex of degree 2 in T . Then B is compact. When we prune the
structure tree by removing the vertices of degree 2 we get a tree T ′ such that T is
the barycentric subdivision of T ′ and

−→
T ′ is isomorphic to the structure tree we get

from T . The stabilizers of vertices in this structure tree are conjugates of A which
is therefore compactly generated.

Remark 5 Abels, [1, Struktursatz 5.7 and Korollar 5.8], proves much the same
result but his approach is very different. The methods used in this paper are com-
pared with Abels’ methods in Section 3.6.

Remark 6 In this context it is worth noting a result of Morris and Nicholas, [41],
that a locally compact group that can be expressed as a nontrivial free product
must be discrete.
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Example 1 The group SL2(Qp) is a free product with amalgamation of two copies
of SL2(Zp). Hence SL2(Qp) has infinitely many rough ends.

Theorem 13 in conjunction with Corollary 4 give the following.

Corollary 5 Let G be a compactly generated totally disconnected locally compact
group and H a closed cocompact subgroup. Then G splits over a compact open
subgroup if and only if H splits over a compact open subgroup.

Theorem 14 (Cf. [40, Proposition 2.3]) Let G be a compactly generated totally
disconnected locally compact group. Suppose that the space of rough ends has
precisely two points. Then G has a compact open normal subgroup N such that
G/N is either isomorphic to Z or D∞, the infinite dihedral group.

Proof Let X be a rough Cayley graph of G. Then X is a locally finite graph with
two ends and G acts transitively on X . By [40, Proposition 2.3] there is a normal
subgroup N with finite orbits (and thus compact closure) such that G/N is either
equal to Z or D∞. To complete the proof we have to show that N is open. The
condition on G/N implies that if A1 and A2 are some two distinct orbits of N then
the subgroup of G that stabilizes both A1 and A2 setwise is N. Since A1 and A2 are
both finite we conclude that N is open.

3.3 Accessibility

The usefulness of rough Cayley graphs can be demonstrated further by consider-
ing the concept of accessibility.

Definition 7 A finitely generated group is said to be accessible if it has an action
on a tree T such that:

(i) the number of orbits of G on the edges of T is finite;
(ii) the stabilizers of edges in T are finite subgroups of G;
(iii) every stabilizer of a vertex in T is a finitely generated subgroup of G and has

at most one end.

We only need to change the above definition slightly to fit into our framework.

Definition 8 A compactly generated totally disconnected locally compact group
is said to be accessible if it has an action on a tree T such that:

(i) the number of orbits of G on the edges of T is finite;
(ii) the stabilizers of edges in T are compact open subgroups of G;
(iii) every stabilizer of a vertex in T is a compactly generated subgroup of G and

has at most one rough end.

Accessibility also has a graph theoretical aspect.

Definition 9 ([53, p. 249]) Let X be a connected locally finite graph. If there is a
number k such that any two distinct ends can be separated by removing k or fewer
edges from X then the graph X is said to be accessible.
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As pointed out in [44, Theorem 0.4], the property of a locally finite connected
transitive graphs being accessible is preserved by quasi-isometries.

It was an open question for a long time if every finitely generated group is
accessible. Dunwoody proved in [9] that every finitely presented group is acces-
sible, but in [10] he constructed a finitely generated group that is not accessible.
Thomassen and Woess prove in [53, Theorem 1.1] that a finitely generated group
is accessible if an only if its Cayley graphs are accessible. They also proof that
a locally finite connected transitive graph X is accessible if and only if there is a
number n such that BnX = BX (see [53, Theorem 7.6], for notation see Theo-
rem 6 above). With reference to Theorem 6 this implies that X is accessible if and
only if there is a tree set En ⊆ BnX that generatesBX .

The following is an analogue of the result of Thomassen and Woess.

Theorem 15 Let G be a compactly generated totally disconnected locally com-
pact group. Then G is accessible if and only if every rough Cayley graph of G is
accessible.

Proof First we suppose that a rough Cayley graph X of G is accessible. Then we
can find a structure tree −→T =

−→T (E) of X such that for any vertex α of −→T the
graph Xα has at most one end, [53, Theorem 7.6 and Proposition 7.7]. This means
that Φ−1(α) contains at most one end. The rough Cayley graphs of Gα are quasi-
isometric to the one ended graph Xα (see Theorem 3). Hence the subgroup Gα
has at most one rough end. The rest of the conditions in Definition 8 follow from
Theorem 12.

Assume now that the group G is accessible. Let T be a tree that G acts on such
that the conditions in Definition 8 are satisfied. By Theorem 11 we can view−→T as
a structure tree of some rough Cayley graph X of G with respect to some tree set
E (we may assume that −→T has been pruned, see Remark (ii) following the proof
of Theorem 11) since the pruning process does not affect the properties listed in
Definition 8. If the graph X is not accessible then there is a vertex α of −→T such
that the graph Xα has more than one end. The compactly generated subgroup Gα
acts on Xα with only finitely many orbits. By Theorem 3 any rough Cayley graph
ofGα is quasi-isometric to Xα . The rough Cayley graphs forGα will consequently
have more than one end contradicting the assumptions on the action of G on −→T .
Hence X is accessible. Accessibility of locally finite transitive graphs is invariant
under quasi-isometries. It follows that all rough Cayley graphs ofG are accessible.

3.4 Co-compact free subgroups

Let G be a finitely generated group and X a Cayley graph of G with respect to
some finite generating set. It is a well known result, often attributed to Gromov
but also found in a slightly different form in Woess’ paper [58], that X is quasi-
isometric to a tree if and only ifG has a finitely generated free subgroup with finite
index. For graphs of groups the reader is referred to Serre’s book [50].

Theorem 16 Let G be a compactly generated totally disconnected group.
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(i) Some (hence, every) rough Cayley graph of G is quasi-isometric to some tree
if and only if G has an expression as a fundamental group of a finite graph of
groups such that all the vertex and edge groups are compact open subgroups
of G.

(ii) Assume also that the group G is unimodular. Then some (hence, every) rough
Cayley graph of G is quasi-isometric to some tree if and only if G has a finitely
generated free subgroup that is cocompact and discrete.

Proof (i) Assume first that X is a rough Cayley graph of G and that X is quasi-
isometric to some tree T . It follows from [58, Proposition 2] or from [30, Theo-
rem 6] that a locally finite graph that is quasi-isometric to a tree has no thick ends.
From [37] it is known that an inaccessible graph has uncountably many thick ends.
Thus our graph X is accessible and there is a tree set En ⊆ BnX which generates
BX . From [53, Theorem 7.3] and [34, Lemma 4] one concludes that the structure
tree −→T =

−→T (E) is locally finite. Suppose that e is an edge in X that is contained
δ f for some cut f in X and assume that α is an end vertex of the corresponding
edge f in−→T . The orbit of e under Gα is contained in the union of the coboundaries
of the edges in −→T that have α as an end vertex. By assumption, there are only
finitely many such edges in −→T and we conclude that the orbit Gαe is finite. Thus
Gα is relatively compact. The stabilizer in G of a vertex v in

−→T is a closed and
open subgroup by Theorem 12. Hence Gα is a compact open subgroup of G. The
action of G on the structure tree −→T gives an expression of G as a fundamental
group of a graph of groups such that both the edge and vertex groups in this graph
of groups are compact open subgroups of G.

Conversely, assume thatG has an expression as a fundamental group of a graph
of groups where all the vertex and edge groups are compact open subgroups of G.
This gives us an action of G on a locally finite tree such that all the stabilizers of
vertices are compact open subgroups of G and G has only finitely many orbits on
the vertex set of the tree. By Theorem 3 the graph T is quasi-isometric to some
rough Cayley graph of G.

(ii) Suppose first that G is unimodular with a rough Cayley graph that is quasi-
isometric to some tree. By the above we get an action of G on a locally finite tree
−→T such thatG has only finitely many orbits on the vertices of−→T and the stabilizers
of vertices are compact open subgroups of G. It follows from [2, Section 4] that
G contains a discrete finitely generated free subgroup F acting with finitely many
orbits on −→T . Hence F is cocompact in G.

Now suppose that G has a cocompact discrete finitely generated free subgroup
F . The free group F has a (rough) Cayley graph Y that is a tree. Since F is cocom-
pact we can refer to Theorem 3 and conclude that if X is a rough Cayley graph of
G then X is quasi-isometric to the tree Y .

Corollary 6 Let G be a compactly generated totally disconnected locally compact
group. If G has a cocompact finitely generated free discrete subgroup then G splits
over some compact open subgroup and G can be written as G = A ∗C B or G =
A∗C x where A,B and C are compact open subgroup of G.

Proof The free subgroup has a tree as a Cayley graph and, by Corollary 2(ii),
a rough Cayley graph for G will be quasi-isometric to this tree. The group G is
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unimodular since it has a discrete cocompact subgroup and now the result follows
from the latter half of Theorem 16.

Example 2 Before it was mentioned that SL2(Qp) is a free product with amal-
gamation of two copies of SL2(Zp) which are compact open subgroups. Hence
the rough Cayley graphs of SL2(Qp) are all quasi-isometric to trees and, because
SL2(Qp) is unimodular, then SL2(Qp) has a cocompact discrete finitely generated
free subgroup.

3.5 Types of automorphisms of graphs

The automorphisms of a connected graph can be split up into three classes: ellip-
tic, parabolic and hyperbolic (see Section 3.1.2). In this section we explore this
classification further, considering the case of a compactly generated totally dis-
connected locally compact group acting on a rough Cayley graph.

Theorem 17 Let G be a compactly generated totally disconnected locally com-
pact group. Whether an element g ∈ G acts on a rough Cayley graph X as an
elliptic, parabolic or hyperbolic element does not depend on the choice of the
rough Cayley graph X.

Proof Lemma 1 says that g acts on a rough Cayley graph as an elliptic automor-
phism if and only if g is a periodic element of the topological group G, i.e. the
cyclic subgroup generated by g is relatively compact in G.

Suppose that X1 and X2 are two rough Cayley graphs for G. By Theorem 10
above, there is a homeomorphismΨ :ΩX1→ΩX2 that is covariant with the action
of G. If g acts like a parabolic automorphism on X1 then g is not periodic and g
fixes precisely one end of X1. Since the homeomorphismΨ is covariant with the
action of G on ΩX we see that g fixes precisely one end of X2 and acts as a
parabolic automorphism on X2.

That g acts like a hyperbolic automorphism on X2 if g acts like a hyperbolic
automorphism on X1 is proved in the same way.

This theorem allows us to speak of the elements of G as elliptic, parabolic or
hyperbolic without any reference to the action of G on a particular rough Cayley
graph. It is also possible to describe the properties of being elliptic, parabolic or
hyperbolic in more group theoretic terms.

Theorem 18 Let G be a compactly generated totally disconnected locally com-
pact group with infinitely many ends.

(i) An element g in G is elliptic if and only if g is a periodic element of G.
(ii) An element in g in G is parabolic if and only if g is not elliptic and whenever

G acts on a tree such that the stabilizers of the edges in T are compact open
subgroups of G then g fixes a vertex.

(iii) An element g in G is hyperbolic if and only if G has an action on a tree such
that G acts transitively on the set of neighbours of any vertex, the edge stabi-
lizers are compact open subgroups and g acts as a hyperbolic element.
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This can also be phrased in terms of graphs of groups and splittings of groups.
The second item says that when G is written as a graph of groups with compact
open edge groups then a parabolic element will always belong to a conjugate of
a vertex group. The third item says that G splits over a compact open subgroup C
such that G= A∗C B or G= A∗C x and g is not contained in a conjugate of A or B.

Proof (of Theorem 18.) Item (i) follows immediately from Lemma 1.
We will first look at item (iii). Suppose g is hyperbolic. Let X be some rough

Cayley graph of G. Then g fixes two ends of X . Let e be a Dunwoody-cut of X that
separates these two ends. Note that the stabilizer of e is a compact open subgroup
C of G. Let E denote the tree set E = Ge∪Ge∗. The action of G on −→T =

−→T (E)
gives us the desired action on a tree (see Lemma 3).

Suppose now that G acts on a tree T as described in (iii). We may clearly
assume that T has no vertices of degree 2. LetC denote the stabilizer in G of some
edge in T . The condition that the stabilizer in G of a vertex acts transitively on all
adjacent vertices implies that G acts transitively on the edges of T . Suppose e is
an edge in −→T that separates the two ends of T fixed by g. The edge e corresponds
to a Dunwoody-cut f of some rough Cayley graph X and the related structure
tree −→T (G f ∪G f ∗) is isomorphic to −→T (the conditions on T imply that there is no
need for pruning as described in Remark (ii) following the proof of Theorem 11).
Hence g acts like a hyperbolic automorphism on X and g is hyperbolic.

Part (ii) follows directly from (iii) and Theorem 11.

These ideas about types of automorphisms can also be linked to the concept of
accessibility.

Corollary 7 Let G be a compactly generated totally disconnected locally compact
group. Then G is accessible if and only if G has an action on a tree such that
the stabilizers of edges are compact open subgroups of G and all the hyperbolic
elements in G act as hyperbolic automorphisms on T .

Proof Let X be a rough Cayley graph of G. If G is accessible then the graph X
is accessible. Thus there is a number n and a tree set En of Dunwoody-cuts of
X that generates the Boolean ring BX and BX = BnX . Let

−→T =
−→T (E) be the

structure tree. By Theorem 12, the stabilizers of edges in −→T are compact open
subgroups of G and stabilizers of vertices are compactly generated. If g ∈ G is a
hyperbolic element then there is a cut in E that separates the two ends that g fixes
and we see that g acts like a hyperbolic automorphism on −→T (see the proof of [34,
Corollary 1 (iii)]).

Conversely, suppose we have an action of G on a tree T satisfying the condi-
tions above. We may assume that the tree has been “pruned” (see the remark fol-
lowing the proof of Theorem 11), because if the conditions in the corollary were
satisfied before “pruning” then they will also be satisfied after pruning. From the
action of G on T we can get a tree set of cuts of some rough Cayley graph X
(see Theorem 11). If α is a vertex in T then Gα acts on the graph Xα with only
finitely many orbits. The graph Xα is quasi-isometric to a rough Cayley graph of
Gα . If Xα had more than one end then it would follow from Theorem 4 (see also
[53, Lemma 8.3]) that Gα would contain an element that acted like a hyperbolic
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automorphism on Xα and this element would also act like a hyperbolic element
on X . The assumed absence of hyperbolic elements from Gα ensures thus that Xα
has only one end. Hence X is accessible.
Corollary 8 Let G be a compactly generated totally disconnected locally compact
group. Then G is accessible if and only if G can be expressed as a fundamental
group of a finite graph of groups such that all the edge groups are compact open,
all vertex groups are compactly generated and no hyperbolic element of G is con-
tained in a vertex group.

Proof This Corollary is a translation of Corollary 7 into terms involving graphs
of groups.

In Section 3.1.2 the direction of a parabolic or hyperbolic automorphism of a
graph X is defined. The set of directions of the graph X , denoted D(X), is the set

{D(g) | g ∈ Aut(X) acts as a parabolic or hyperbolic automorphism on X}.

Suppose that X1 and X2 are two rough Cayley graphs for some compactly gener-
ated totally disconnected locally compact group G. If ω is the direction of g when
g acts on X1 thenΨ(ω) (for the definition ofΨ see Theorem 10) is the direction
of g when g acts on X2. Hence, the restriction ofΨ toD(X1) is a homeomorphism
D(X1) → D(X2) (see Theorem 10). Also note that if g and h have the same direc-
tion when acting on X1 they will also have the same direction when acting on X2.
Thus we are justified in talking about the directions of an element in G without
referring to a particular action of G on a rough Cayley graph.

Remark 7 The case of a finitely generated group acting on a Cayley graph is a
special case of the results above.

Theorem 19 Let G be a compactly generated totally disconnected locally com-
pact group with more than one rough end. Suppose g and h are hyperbolic ele-
ments of G. Then {D(g),D(g−1)} = {D(h),D(h−1)} if and only if the closure of
the group 〈g,h〉 in G has precisely two rough ends.

Proof DefineH as the closure inG of the group 〈g,h〉. Assume {D(g),D(g−1)}=
{D(h),D(h−1)}. We may assume that D(g) = D(h) and D(g−1) = D(h−1). Let
X be some rough Cayley graph of G. Let e be a Dunwoody cut separating the two
ends that g fixes. The group G acts on the structure tree −→T =

−→T (Ge∪Ge∗) and g
and h act hyperbolically on −→T . Since g and h have the same fixed ends in X , they
also have the same fixed ends in −→T . Hence there is a line L in −→T such that both
g and h act like translations on L, fixing both ends of L. The stabilizer in H of a
vertex α on L must be open and compact in H since the stabilizer of a vertex must
fix the whole line and stabilizers of edges are open and compact in H. Thus the
line L is a rough Cayley graph of H and H has only two rough ends.

Now suppose that H has exactly two rough ends. Let X = RCay(G,U,S) be a
rough Cayley graph of G and assume that g and h are contained in S. Let v denote
the vertexU in X . The subgraphY of X that is spanned by the orbitHv is connected
(because {v,gv} and {v,hv} are edges in X). The graph Y is a rough Cayley graph
of H and thus, by assumption, has two ends. These ends are the directions of g
and g−1 as well as the directions of h and h−1, and therefore {D(g),D(g−1)} =
{D(h),D(h−1)}.
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Example 3 Looking at the above theorem one is led to ask about the relationship
between the number of ends of the finitely generated subgroup 〈g,h〉 of G and the
number of rough ends of the closure of 〈g,h〉 in G. The following example shows
that 〈g,h〉 can have just one end whilst its closure can have more than one rough
end.

Define a graph X such that X consists of two disjoint lines . . . ,x−1,x0,x1, . . .
and . . . ,y−1,y0,y1, . . . with additional edges {xi,yi+1} and {yi,xi+1} for all i. The
graph X has two ends. The automorphism group of X has a subgroup G of index 2
that fixes both the ends of X . Let g be an automorphism of X such that g(xi) = xi+1
and g(yi) = yi+1 for all i and let f be an automorphism that transposes x0 and y0
but fixes all other vertices. Set h = g f . The group 〈g,h〉 can translate along the
lines and also interchange xi and yi for finitely many values of i (the group 〈g,h〉
is the restricted wreath product of Z2 with Z and has appeared in the literature
recently as the lamplighter group) and it has only one end. The closure of 〈g,h〉
in G is equal to G (it is the unrestricted wreath product of Z2 with Z) where one
can translate, and also interchange xi and yi on any set of values for i. The closure
of 〈g,h〉 is G and is a compactly generated locally compact group with two rough
ends.

Corollary 9 Let G be a finitely generated group with more than one end. Suppose
g and h are hyperbolic elements of G. Then {D(g),D(g−1)} = {D(h),D(h−1)}
if and only if the group 〈g,h〉 has precisely two ends.

Proof The same argument as in the proof of Theorem 19 can be used here, in-
deed if we view G as a having the discrete topology this is just a special case of
Theorem 19.

Suppose now that X is an infinite connected locally finite graph. Jung and
Watkins [26, Lemma 5.2 and Theorem 5.13] prove that if there is some automor-
phism of X that has only finitely many orbits then X has precisely two ends. For
the following corollary, recall that if a totally disconnected locally compact group
G acts on a setΩ with open and compact point stabilizers then a subgroup H of G
is cocompact if and only if H has only finitely many orbits on Ω , see the remarks
before Corollary 2.

Corollary 10 Let G be a compactly generated totally disconnected locally com-
pact group with more than one rough end. Suppose g and h are hyperbolic ele-
ments of G. Then {D(g),D(g−1)} = {D(h),D(h−1)} if and only if 〈h〉 is cocom-
pact in the closure of 〈g,h〉 in G.

The following is well know, e. g., see a more general result in the same vein in
[25, Theorem 2.5].

Corollary 11 Let G be a compactly generated totally disconnected locally com-
pact group with infinitely many ends. Let X be a rough Cayley graph of G. Suppose
g and h are hyperbolic elements of G such that there is no end of X fixed by both
g and h. Then there are integers n and m such that 〈gn,hm〉 is a free group.

Let us now look at the special case of a finitely generated group acting on its
Cayley graph. The next result answers a question of Pavone, [46, p. 69].
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Theorem 20 Let G be a finitely generated group and S a finite generating set.
Define X as the Cayley graph of G with respect to the generating set S. Suppose
g and h are elements of G that act on X as hyperbolic automorphisms. If D(g) =
D(h) then D(g−1) = D(h−1).

Proof Suppose D(g) = D(h), but D(g−1) (= D(h−1). We may assume that both g
and h belong to the generating set S, because adding them to S will not change the
assumptions that D(g) = D(h) and D(g−1) (= D(h−1). Set H = 〈g,h〉. The end
D(g) is fixed by H.

Let X ′ be the Cayley graph of H with respect to the generating set S′ = {g,h}.
The graph X ′ can be regarded as a subgraph of X . Let F be a finite set of vertices
of X such that the distinct endsD(g), D(g−1) andD(h−1) belong to distinct com-
ponents ofVX \F . Each of these components will contain infinitely many vertices
from X ′. There are integers n1,n2,n3 such that all the elements gn1 ,gn1+1, . . . are
contained in the component containing D(g), all the elements gn2 ,gn2−1, . . . are
contained in the component containingD(g−1) and all the elements hn3 ,hn3−1, . . .
are contained in the component containing D(h−1). Hence VX ′ \F has at least
three infinite components in X ′. Thus the group H has infinitely many ends. But a
group with infinitely many ends acting on its Cayley graph can not fix an end (see,
[51, Proposition 2 and Corollary 5]).

The assumption thatD(g−1) (= D(h−1) leads to contradiction and we conclude
that D(g−1) = D(h−1).

In his paper Pavone proves a similar result when G is a finitely generated
word hyperbolic group with infinite boundary, see [46, Theorem 3]. The following
corollary is an analogue to [46, Corollary 4].

Corollary 12 Let G be a finitely generated group with infinitely many ends. Set
D(G) = {D(g) | g ∈ G, g is not elliptic.}. The map f : D(G) → D(G) such that
f (D(g)) = D(g−1) is well defined and discontinuous at every point of D(g).

Proof That f is well defined follows from Theorem 20. We have to show that f is
discontinuous in every point. Let X be a finitely generated Cayley graph of G. A
basis for the topology of ΩX (the end space of G) consists of all sets of the form
ΩC whereC is a cut of X . Sets of the typeΩC∩D(G) form a basis of the subspace
topology on D(G). Because X has infinitely many ends, there are disjoint base
elementsU ,V andW such that ω ∈U and f (ω)∈V . By the bilateral denseness of
the directions ofG (see discussion at the end of Section 3.1.2), there is a hyperbolic
element h in G such thatD(h) ∈U and D(h−1) ∈W . Then f (D(h)) = D(h−1) ∈
W and f (D(h)) (∈ V . Whence f is discontinuous at ω .

Example 4 Theorem 20 does not generalize to compactly generated totally dis-
connected locally compact groups. Let T denote the regular tree of degree 3. Set
G = Aut(T ). Then G with the permutation group topology is a compactly gener-
ated totally disconnected locally compact group and T is a rough Cayley graph
of G. Let Gω be the subgroup of G that fixes a given end ω of T . This subgroup
is closed in G and is thus a totally disconnected locally compact group and T is
also a rough Cayley graph of Gω . Since Gω acts transitively on T and the stabiliz-
ers of vertices are compact open subgroups of Gω , we see from the latter part of
Theorem 1 that Gω is compactly generated. Suppose now that g is an hyperbolic
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element inGω . The only ends fixed by g areD(g) andD(g−1) so ω must be equal
to either D(g) or D(g−1). Say ω = D(g−1). The group Gω fixes only the end ω .
So Gω contains an element f such that f (D(g)) (= D(g). Thus if h= f g f−1 then
D(h−1) = D(g−1) but D(h) (= D(g).

Remark 8 Pavone mentions that his [46, Theorem 3] could also be deduced from
the theory of convergence groups originating from [15]. Bowditch [3] has shown
that if G acts on a locally finite connected graph X with infinitely many ends and
the stabilizers of edges in X are all finite then the action on the ends of X is a con-
vergence action. Theorem 20 now follows from [15, Corollary 6.9]. The situation
concerning general group actions on infinite end spaces of graphs is different as
can be seen from Example 4.

3.6 Specker compactifications

Stalling’s Ends Theorem says that whether or not a finitely generated group splits
over a finite subgroup depends on the number of ends of a Cayley graph with
respect to some finite set of generators. Much work has been done on extending
and generalizing Stalling’s theorem. In this section and the next one, we will look
at some of this work and how the concepts introduced relate to the present work.
First we look at Abels’ construction of Specker compactifications of compactly
generated locally compact groups, see Sections 2, 3 and 5 in [1]. Below, Abels’
construction is described in graph theoretic terms. We will show that if G is a
compactly generated totally disconnected locally compact group then the ideal
points in his compactification can be identified with the rough ends of G. Abels
uses his construction to derive an analogue of Stallings’ Ends Theorem which is
roughly the same as our Theorem 13.

Definition 10 A Specker compactification of a topological group G is a compact
space Ĝ containing G such that

(i) G is dense in Ĝ,
(ii) Ω = Ĝ\G is totally disconnected,
(iii) the right regular action of G on itself extends to a trivial action on Ω (i.e.

extends to the identity on Ω ).
(iv) the left regular action of G on itself extends to an action by homeomorphisms

on Ω .

Note that G is open and therefore Ω is closed in the compact space Ĝ. Hence
the “boundary” Ω is compact. Abels defines a topological graph as a connected
graph X with the additional structure that the vertex set is a locally compact topo-
logical space and with the property that if K is a compact set of vertices then
the vertex boundary ∂K is relatively compact (i.e. has compact closure). Consider
connected components when a relatively compact set of vertices is removed from
X . The “boundary” Ω of X can now be constructed by using inverse limits in
much the same way as in the construction of the ordinary ends of a graph de-
scribed in Section 3.1.1. The only difference is that the word “finite” is replaced
with “relatively compact”.
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The definition ofΩ could also be described by considering equivalence classes
of rays. Define a ray R in X to be properly non-compact if the intersection of R
with any compact subset is finite. If R is a properly non-compact ray and K is a
relatively compact set of vertices in X , then we see that only one component of
VX \K contains infinitely many vertices of R. Define two properly non-compact
rays R1 and R2 to be equivalent if wheneverK is a relatively compact set of vertices
then the same component of VX \K contains infinitely many vertices from both
R1 and R2. The points in the boundary Ω can now be defined as the equivalence
classes of properly non-compact rays. If C is a set of vertices in X which has a
relatively compact vertex boundary then we say that an equivalence class of rays
belongs to C if C contains infinitely many vertices from some (equivalently, any)
ray in the equivalence class. If ∂C is relatively compact then defineC as the union
of C with all the equivalence classes of properly non-compact rays that belong to
C. A basis for the open neighbourhoods of a point ξ in the boundary consists of all
sets C where C is an open set of vertices with relatively compact vertex boundary
such that ξ is an element of C \C.

Let G be a compactly generated totally disconnected locally compact group
with infinitely many rough ends. Suppose U is a compact open subgroup of G
and that U together with a finite set T forms a good generating set. Let X be
the ordinary (undirected) Cayley graph of G with respect to the generating set
U ∪T . The graph X is an example of a topological graph as described above. The
subgraphs of X induced by the left cosets ofU are all complete graphs. The rough
Cayley graph X ′ = RCay(G,U,T ) is a quotient graph of X where we contract
each left coset of U to a single vertex. Let π : X → X ′ be the quotient map. The
image under π of a properly non-compact ray R in X is not necessarily a ray, but
since R is properly non-compact this image will be infinite and since X ′ is locally
finite it will contain some ray R′. Two rays in the image of R will clearly belong
to the same end of X ′. We can also conclude that two properly non-compact rays
R1 and R2 in X are in the same equivalence class if and only if the rays R′1 and
R′2 in X ′ belong to the same rough end. If we start with a ray in X ′ then one
can find a properly non-compact ray in X that projects onto our given ray in X ′.
Hence there is a one-to-one correspondence between the rough ends of G and the
ideal points in the Specker compactification that Abels defines. Abels deduces an
analogue of Stalling’s Ends Theorem (see [1, Struktursatz 5.7 and Korollar 5.8])
using methods derived directly from Stalling’s proof. Abels result on splittings
of groups where the Specker-compactification has infinitely many ideal points is
roughly equivalent to Theorem 13.

A priori it seems that Abels’ treatment of groups whose Specker-compactifi-
cation has infinitely many ideal points is more general in scope than our treatment
of groups with infinitely many rough ends. But Abels proves that if a compactly
generated locally compact group has a Specker-compactification with more than
two points then the group must contain a compact open subgroup (see [1, Sec-
tion 5]). The results in this paper are stated for compactly generated totally dis-
connected locally compact groups, but it is clear that instead of assuming that
the group is totally disconnected it is enough to assume that the group contains a
compact open subgroup.

Remark 9 In [27] the first author discusses metric ends of graphs. A metric ray is
a ray whose infinite subsets are all unbounded. Two metric rays are equivalent if
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they cannot be separated by a bounded set of vertices. That is, two metric rays are
equivalent if whenever we remove a bounded set of vertices then all but finitely
many vertices of the twometric rays will always lie in the same component. Metric
ends (or proper metric ends in [27]) are the corresponding equivalence classes of
metric ends. For locally finite graphs the metric ends are just the same as the
ordinary ends. Abels proves, [1, Item 2.3], that in a topological graph a set of
vertices is relatively compact if and only if it has finite diameter. From this it
follows that the ideal points in Abels’ compactification can be identified with the
metric ends of the topological graph. The quotient map π : X → X ′ discussed
above is a quasi-isometry and extends to a homeomorphism between the spaces
of metric ends of X and X ′, see [27, Theorem 6].

3.7 Ends of pairs of groups

The number of ends of a finitely generated group determines whether or not the
group splits over a finite subgroup. Suppose a subgroup C of G is given. We seek
a way to define the number of ends of G “relative” to the subgroup C. The aim
would then be to show that if this number of ends is greater than 1 then G splits
overC or over some subgroup closely related toC. Before discussing two different
definitions of the number of ends of G “relative” to C and how these concepts
relate to our rough ends, we need some preliminary discussion.

LetG be a finitely generated group and X some Cayley graph ofGwith respect
to some finite generating set. The number of ends of G can be defined as the
supremum of the number of infinite connected components when a finite set of
vertices is removed from the graph.

Definition 11 Let X be a Cayley graph of a (finitely generated) group G with
respect to some (finite) generating set S. Suppose C is a subgroup of G.

(i) Define CX as the quotient graph of X with respect to the right cosets of C (the
quotient with respect to the left regular action of C on the vertex set of X). Let
Cπ denote the quotient map Cπ : X → CX.

(ii) Define XC as the quotient graph of X with respect to the left cosets of C (the
quotient with respect to the right regular action of C on the vertex set of X).
Let πC denote the quotient map πC : X → XC.

Remark 10 Note that that XC is equal to RCay(G,C,S\C).

The two graphs CX and XC can be very different. The group G will act transi-
tively on XC by left multiplication as a group of automorphisms, but the graph CX
does not necessarily have a transitive group of automorphisms (see Example 5).

Definition 12 Let G be a group and C a subgroup of G. A subset of G is called
right-C-finite if it can be covered with finitely many right cosets of C. A set which
is not right-C-finite is called right-C-infinite. Left-C-finite and left-C-infinite sets
are defined in the same way using left cosets of C.

Below there are two definitions of the number of ends of G relative to a sub-
group C that have been discussed in the literature. The notion of ends of pairs of
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groups appeared first in papers by Houghton [23] and Scott [48]. A variant of the
idea of ends relative to a subgroup was introduced by Kropholler and Roller in
[31]. Here we use the name coends for Krophollers and Rollers concept and use
the following reformulation, due to Bowditch [4], as a definition.

Definition 13 Let G be a finitely generated group and C a subgroup of G. Define
X as a Cayley graph of G with respect to some finite generating set.

(i) (Cf. [48, Lemma 1.1]) The number of ends of the pair G and C, denoted by
e(G,C), is defined as the number of ends of the graph CX.

(ii) The number of coends, denoted ẽ(G,C), of C is defined as the maximum num-
ber of right-C-infinite components of X when a right-C-finite set of vertices in
X is removed.

It is simple to show that e(G,C) and ẽ(G,C) do not depend on the choice of
generators used to construct X . In this section we will consider these concepts
from a graph theoretical viewpoint and describe how these concepts relate to the
work of the present paper. For a broader discussion and a comparison of these
concepts the reader is referred to the survey paper by Wall [57].

Theorem 21 Let G be a compactly generated totally disconnected locally com-
pact group and U a compact open subgroup of G. Define X as the ordinary Cayley
graph of G with respect to some compact generating set. The graphs UX and XU
are both connected and locally finite.

Proof It is obvious that the graphs UX and XU are both connected. Let K denote
the compact generating set used to construct X . Suppose that A is a set of vertices
in X . The vertex boundary of A in X is contained in the set AK. If A is relatively
compact then the set AK is also relatively compact and can be covered with finitely
many left (right) cosets ofU . Thus we see that if A is a left (right) coset ofU then
the set of neighbours of A in UX (xU ) is finite. When we form the quotient of X by
the right (left) cosets ofU we get a locally finite graph.

Instead of using the topology on G we can impose a group theoretic condition
on G and C that allows us to get the same result.

Definition 14 Two subgroups H and K in G are said to be commensurable if
H ∩K has finite index in both H and K. The commensurator of H is the subgroup
of those elements g ∈ G for which gHg−1 is commensurable with H.

When U is a compact open subgroup of a topological group G then every
conjugate ofU is commensurable withU .

Theorem 22 Let G be a finitely generated group and X = Cay(G,S) a Cayley
graph of G with respect to some finite generating set S. Suppose C is a subgroup
of G.

(i) The graph CX is locally finite.
(ii) The commensurator of C is G if and only if each left coset of C is contained in

a union of finitely many right cosets and vice versa.
(iii) The commensurator of C is G if and only if XC is locally finite.
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Proof (i) The vertices of CX are the orbits ofC whenC acts on the Cayley graph X
from the left. Each element g in the vertex set of X has neighbours in only finitely
many orbits Ch1, . . . ,Chk of C. The neighbours of all the vertices in the orbit Cg
will be contained in the union ofCh1, . . . ,Chk. Hence the degree of a vertexCg in
CX is at most equal to the degree of the vertex g in X . Therefore the graph CX is
locally finite.

(ii) Assume the commensurator ofC is G. Let us consider a left coset gC ofC.
The group C∩gCg−1 has finite index in gCg−1. Thus gCg−1 can be covered with
finitely many right cosets of C, i.e. gCg−1 ⊆ Ch1 ∪ · · ·∪Chn. Multiplying on the
right with g we get gC⊆Ch1g∪ · · ·∪Chng. The prove that each right coset can be
covered with finitely many left cosets is similar.

Assume now that each left coset of C is contained in a union of finitely many
right cosets and vice versa. Let g be an element inG. Find elements h1, . . . ,hn inG
such that g−1C ⊆Cg−1h1∪ · · ·∪Cg−1hn. ThenC ⊆ (gCg−1)h1∪ · · ·∪ (gCg−1)hn
implying that the groupC∩gCg−1 has finite index inC. The proof thatC∩gCg−1
has finite index in gCg−1 is similar.

(iii) Suppose the commensurator of C is G. Let S= {s1, . . . ,sn} denote the set
of generators used to construct X . Since the graph XC is transitive we only need
to consider the degree of the vertex in XC represented by the left coset C. All the
vertices in X which are adjacent to some element in C are contained in the right
cosets Cs1, . . . ,Csn. Since each right coset can be covered with finitely many left
cosets, we see that the degree of the vertex in XC representing the right coset C is
finite. Hence XC is locally finite.

Suppose now that XC is locally finite. The size of the orbit of the vertex in XC
representing the coset gC under C is equal to the index |C : C∩ gCg−1|. But the
subgroupC fixes the vertex representingC in XC and the vertices in the orbit of gC
all have the same distance from C. Since the graph XC is locally finite, there are
only finitely many vertices in any given distance from C and thus the orbit of gC
is finite. Therefore the index |C : C∩ gCg−1| is finite. Letting the vertices C and
gC in XC and the subgroups C and gCg−1 change roles, one shows that the index
|gCg−1 :C∩gCg−1| is also finite. HenceC and gCg−1 are commensurable and we
conclude that the commensurator ofC is the whole group G.

From Theorem 2+ and Corollary 3 we can piece together the following:

Theorem 23 Let G be a finitely generated group. Suppose that C is a subgroup
of G such that the commensurator of C is the whole of G. If X and X ′ are Cayley
graphs of G for some finite generating sets then the graphs XC and X ′

C are quasi-
isometric. If X is a Cayley graph with respect to some finite generating set and XC
has more than one end then G splits over a subgroup commensurable with C.

One of the things that makes the concept of ends of pairs of groups more
difficult than ordinary ends, or the rough ends, is that the group G does not have
a natural action on CX . For instance, because of the transitive action of G, the
Cayley graph X has either 0, 1, 2 or infinitely many ends, but e(G,C) can take any
given integer value, see [48, p. 186].

Example 5 LetG be the infinite dihedral group andC some two element subgroup
of G. Let X be some Cayley graph of G with respect to some finite set of genera-
tors. The graph CX has only one end and thus e(G,C) = 1. The graph XC has two
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ends. The subsets of G which are right-C-finite are just the finite sets. The number
of coends is thus just the same as the number of ordinary ends, i.e. ẽ(G,C) = 2.

The example above sets the tone for the comparison between the number of
ends of CX and XC and the number of coends ofC. First we will have a look at the
case when G is a compactly generated totally disconnected group, U a compact
open subgroup of G and X a rough Cayley graph of G. The analogue of coends of
U would be defined by looking at right-U-infinite components of X when a right-
U-finite set of vertices in X is removed from X . But the right-U-finite sets are just
the relatively compact subsets of G, and the right-U-infinite sets are just the sets
that are not relatively compact. We are thus back to the concepts discussed in the
previous section on Specker compactifications.

Theorem 24 Let G be a compactly generated totally disconnected locally com-
pact group and U a compact open subgroup of G. Define X as the ordinary Cayley
graph of G with respect to a compact generating set S that includes a generating
set forU. Then the graphs XU and UX are both locally finite and the graph XU has
at least as many ends as the graph UX.

Proof The graph X is an example of a topological graph as defined in Section 3.6.
Let N be the set of vertices in VX which are adjacent to a given right coset of U .
The set N is relatively compact, because right cosets ofU are compact and X is a
topological graph. Hence N can be covered with finitely many right cosets of U .
This implies that CX is locally finite. The proof that XC is locally finite is identical.

The number of ends of a locally finite graph can be defined as the supremum
of the number of infinite components when a finite set of vertices is removed. Sup-
pose that we get n infinite components when we remove a finite set F of vertices
from UX . The pre-image UF under Uπ of F is a finite union of right cosets of U
and therefore a compact subset. Note that because Uπ maps a connected set of X
to a connected set of XU , we see that the graphVX \UF has at least n non-compact
connected components.

Now consider the graph XU . Let FU be a union of finitely many left cosets of
U (vertices of XU ) that includes UF . Because UF ⊆ FU , we see that VX \FU has
at least as many non-compact components as VX \UF . The map πU maps the set
FU to a finite set F ′ of vertices of XU . When regarded as an induced subgraph of
X , each left coset of U is a connected graph. Each left coset of U not contained
in FU thus intersects only one component of VX \ FU . Thus πU maps VX \ FU
to VXU \F ′ and the number of infinite components of VXU \F ′ is equal to the
number of components ofVX \FU . ThereforeVXU \F ′ has at least as many infinite
components as VUX \UF, i.e. at least n components. Hence the graph XU has at
least as many ends as the graph UX .

Theorem 25 Let G be a finitely generated group and C a subgroup of G.

(i) ([31, Lemma 2.5]) ẽ(G,C) ≥ e(G,C).
(ii) Suppose that the commensurator of C is G and C is finitely generated. Let X

denote some Cayley graph of G with respect to a finite generating set that in-
cludes a generating set for C. Then the graph XC has at least the same number
of ends of the graph CX.
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This result can be proved by using precisely the samemethods as used to prove
Theorem 24.

The following result was first noted and proved by Dunwoody and Roller [11,
p. 30], but has also emerged in papers by Niblo [43, cf. Theorem B] and Scott and
Swarup [49, Theorem 3.12].

Theorem 26 Let G be a finitely generated group and C a finitely generated sub-
group of G. If e(G,C) > 1 and the commensurator of C is the whole group G then
G splits over a subgroup commensurable with C.

Proof Let X be a Cayley graph of G with respect to some finite generating set
S of G and choose S such that it includes a generating set for C. We conclude
from Theorem 22 and Theorem 25 that the graphs CX and XC are connected and
locally finite, and that the number of ends of XC is at least equal to the number
of ends of CX . Since e(G,C) > 1, we know that CX has more than one end and
hence XC also has more than one end. The group G acts transitively as a group
of graph automorphisms on the locally finite connected graph XC. The conclusion
now follows from Corollary 3.

4 Polynomial growth

Let X be a connected graph. For a vertex v and an integer n≥ 1, define B(v,n) =
{u ∈ VX | d(v,u) ≤ n}. If there are constants c and d such that |B(v,n)| ≤ cnd
for all positive integers n then we say that the graph X has polynomial growth.
This property does not depend on the choice of the vertex v. A finitely generated
group is said to have polynomial growth if it has a Cayley graph with polynomial
growth. Note that having a polynomial growth is invariant under quasi-isometries
and thus the choice of a finite generating set used to construct the Cayley graph is
immaterial. Finitely generated groups with polynomial growth were characterized
in a famous theorem by Gromov.

Theorem 27 ([16]) Let G be a finitely generated group with polynomial growth.
Then G has a nilpotent subgroup N of finite index.

The converse, that a finitely generated nilpotent group has polynomial growth,
had been shown earlier by Wolf [61]. A group having a nilpotent subgroup of
finite index is often said to be almost nilpotent. Gromov’s theorem was applied to
graphs by Trofimov.

Theorem 28 ([55, Theorem 2]) Suppose X is a connected locally finite graph with
polynomial growth and G is a group that acts transitively on X. Then there is a
G-invariant equivalence relation σ on the vertex set of X such that the equiva-
lence classes of σ are finite and if K denotes the kernel of the action of G on the
equivalence classes then G/K is a finitely generated almost nilpotent group and
the stabilizers in G/K of σ -classes are finite.

It should be noted that Trofimov proves an even stronger result [55, Theo-
rem 1], since he shows that it is possible to find an equivalence relation σ as
described in Theorem 28 such that the stabilizer of a vertex in Aut(X/σ) is finite.

The concept of polynomial growth can also be defined for topological groups.
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Definition 15 Let G be a locally compact group generated by a compact neigh-
bourhood V of the identity. Set Vn = {g1g2 · · ·gn | gi ∈ V}. Let µ denote a Haar
measure on G. If there are constants c and d such that µ(Vn)≤ cnd for all positive
integers n then we say that G has polynomial growth.

Gromov’s theorem has been applied to topological groups by Losert in [32]
and [33]. Woess [60] used Losert’s results from [32] to give a short proof of The-
orem 28.

Theorem 29 Let G be a compactly generated totally disconnected locally com-
pact group and X some rough Cayley graph of G. Then X has polynomial growth
if and only if G has polynomial growth (in the sense of Definition 15).

We need the following reformulation of a Lemma from [60].

Lemma 4 ([60, Lemma 3]) Let G be a compactly generated totally disconnected
locally compact group. Suppose X is some rough Cayley graph of G. Fix a vertex
v0 in X and define W = {g ∈ G | d(v0,gv0) ≤ 1}. Then W is a compact open
neighbourhood of the identity and W generates G. Furthermore, g is in Wn =
{g1g2 · · ·gn | gi ∈W} if and only if d(v0,gv0) ≤ n.

Proof Since X is connected it is easy to see thatW generates G. From the defini-
tion of W we see that if g ∈W then d(v0,gv0) ≤ 1. Assume that if g ∈Wn then
d(v0,gv0) ≤ n. Note thatWn ⊆Wn+1. Suppose d(v0,gv0) = n+1. Let u be some
neighbour of gv0 such that d(v0,u) = n. Choose h∈G such that hv0 = u. By the in-
duction hypothesis, h is inWn. Now d(h−1gv0,v0) = d(gv0,hv0) = d(gv0,u) = 1.
Hence h−1g ∈W and g ∈ hW ⊆Wn+1. Conversely, it is clear that if g ∈Wn then
d(v0,gv0) ≤ n.

Proof (of Theorem 29) Assume that the group G has polynomial growth. Define
X as a rough Cayley graph with respect to some compact open subgroup U and
some finite set T . Let µ be a left invariant Haar measure normalized such that
µ(U) = 1. Set v0 as the vertex in X such that Gv0 =U . Define W as above. By
assumption, there are constants C and d such that µ(Wn) ≤Cnd . By Lemma 4,

Wn =
⋃

gi(v0)∈B(v0,n)
giGv0 , (1)

and we see that µ(Wn) = |B(v0,n)|. Whence |B(v0,n)|≤Cnd .
The second half of the proof follows the proof of [60, Theorem 1]. Suppose

the graph X has polynomial growth. Fix a vertex v0 and suppose that C and d are
constants such that |B(v0,n)| ≤ Cnd . Let µ be some left invariant Haar measure
normalized such that µ(Gv0) = 1. Let W be as in the Lemma above. Hence, by
equation (1) above,

µ(Wn) = |B(v0,n)|µ(Gv0) = |B(v0,n)|≤Cnd .

Combining the above result with Trofimov’s theorem we get the following
analogue of Gromov’s theorem.
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Theorem 30 Let G be a compactly generated totally disconnected locally com-
pact group. Then G has polynomial growth if and only if G has a normal compact
open subgroup K such that G/K is a finitely generated almost nilpotent group.

Proof Let X be some rough Cayley graph of G.
If the group G has polynomial growth then, by Theorem 29, the graph X has

also polynomial growth. The result now follows directly from Theorem 28 stated
above.

Suppose now that G has a normal compact open subgroup K such that G/K
is a finitely generated almost nilpotent group. Let S be a finite set of group el-
ements such that K ∪ S is a good generating set for G. The rough Cayley graph
RCay(G,K,S) is isomorphic to the Cayley graph Cay(G/K,S). Since G/K is al-
most nilpotent, this graph has polynomial growth. Therefore G has polynomial
growth and the statement follows from Theorem 27.

5 Commentary

1. Using rough Cayley graphs one can define a compactly generated totally
disconnected locally compact group to be hyperbolic if its rough Cayley graphs
are hyperbolic in the sense of Gromov. (Note that being hyperbolic is a quasi-
isometry invariant.) The results on quasi-isometries between rough Cayley graphs
allow us to define the hyperbolic boundary and the group G has a natural action
on the boundary.
2. The assumption on our groups being totally disconnected can be relaxed: ev-

erywhere in the paper the condition of being totally disconnected can be replaced
by the condition that the group contains a compact open subgroup.

One could also put the results in a different setting by starting with a group G
and a subgroup U such that the commensurator of U is the whole group G and G
can be generated by the union of finitely many cosets ofU .
3. A finitely generated group with the discrete topology is an example of a

compactly generated totally disconnected locally compact group. Thus our results
also hold for finitely generated groups and their Cayley graphs.
4. Instead of considering the rough Cayley graph Y =RCay(G,U,T )we could

study the normal Cayley graph X =Cay(G,U∪T )which is then non-locally finite.
Let u and v be vertices of Y . That is, u and v are left cosets of U . Let x ∈ u and
y ∈ v be vertices of X . Then dY (u,v) ≤ dX (x,y). Let u = w0,w1, . . . ,v = wn be a
path in Y of length n. Then there is a sequence x = r0,s0,r1,s1, . . . ,rn,y = sn of
vertices in X (i.e., elements of G) such that ri and si are elements of the left coset
wi and such that s−1i ri+1 is in T . This sequence spans a path in X whose length
is less or equal 2n+ 1. It follows that dY (u,v) ≤ dX (x,y) ≤ 2dY (u,v)+ 1. This
implies that a set of vertices in X is bounded if and only if its projection to Y is
bounded. In other words, since Y is locally finite, a set of vertices in X is bounded
if and only if its projection to Y is finite. This implies that the metric end space of
X (see the remark at the end of Section 3.6) is isomorphic to the end space of Y . It
can happen that two left cosets ofU can be connected with infinitely many edges
in X . Hence the vertex ends and the edge ends of X do in general not correspond
to the ends of Y .
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For rough Cayley graphs, the property of the group being compactly generated
is crucial in order to obtain an end space of the group as an end space of a locally
finite graph. One aim of further research could be to drop the condition of being
compactly generated and then apply the theory of metric ends in this context.
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29. Krön, B., Möller, R.G.: Metric ends, fibers and automorphisms of graphs. To appear in
Math. Nach.
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