INVARIANT UNIFORMIZATIONS AND QUASI-TRANSVERSALS

BENJAMIN D. MILLER

ABSTRACT. We establish a dichotomy characterizing the class of \((E \times \Delta(Y))\)-invariant Borel sets \(R \subseteq X \times Y\), whose vertical sections are countable, that admit \((E \times \Delta(Y))\)-invariant Borel uniformizations, where \(X\) and \(Y\) are Polish spaces and \(E\) is a Borel equivalence relation on \(X\). We achieve this by establishing a dichotomy characterizing the class of Borel equivalence relations \(F \subseteq E\), where \(F\) has countable index below \(E\) and satisfies an additional technical definability condition, for which there is a Borel set intersecting each \(E\)-class in a non-empty finite union of \(F\)-classes.

INTRODUCTION

Endow \(\mathbb{N}\) with the discrete topology, and \(\mathbb{N}^\mathbb{N}\) with the corresponding product topology. A topological space is analytic if it is a continuous image of a closed subset of \(\mathbb{N}^\mathbb{N}\), and Polish if it is separable and admits a compatible complete metric. A subset of a topological space is Borel if it is in the smallest \(\sigma\)-algebra containing the open sets, and co-analytic if its complement is analytic. Every Polish space is analytic (see, for example, [Kec95, Theorem 7.9]), and Souslin’s theorem ensures that a subset of an analytic Hausdorff space is Borel if and only if it is analytic and co-analytic (see, for example, [Kec95, 14.11]).

A homomorphism from a binary relation \(R\) on a set \(X\) to a binary relation \(S\) on a set \(Y\) is a function \(\phi\) : \(X \to Y\) for which \((\phi \times \phi)(R) \subseteq S\), a reduction of \(R\) to \(S\) is a homomorphism from \(R\) to \(S\) that is also a homomorphism from \(\sim R\) to \(\sim S\), and an embedding of \(R\) into \(S\) is an injective reduction of \(R\) to \(S\). More generally, an embedding of a sequence \((R_i)_{i \in I}\) of binary relations on a set \(X\) into a sequence \((S_i)_{i \in I}\) of binary relations on a set \(Y\) is a function \(\phi\) : \(X \to Y\) that is an embedding of \(R_i\) into \(S_i\) for all \(i \in I\).

2010 Mathematics Subject Classification. Primary 03E15, 28A05.

Key words and phrases. Glimm-Effros, Lusin-Novikov, quotient, transversal, uniformization.

1While the results in [Kec95] are stated for Polish spaces, the proofs of those to which we refer go through just as easily in the generality discussed here.
The diagonal on X is given by $\Delta(X) = \{(x, y) \in X \times X \mid x = y\}$. Define $I(X) = X \times X$, and let \mathbb{E}_0 denote the equivalence relation on $2^\mathbb{N}$ given by $c \mathbb{E}_0 d \iff \exists n \in \mathbb{N} \forall m \geq n \ c(m) = d(m)$.

The product of binary relations R on X and S on Y is the binary relation given by $(x, y) (R \times S) (x', y') \iff (x \ R \ x' \text{ and } y \ S \ y')$. The vertical sections of a set $R \subseteq X \times Y$ are the sets of the form $R_x = \{y \in Y \mid (x, y) \in R\}$, where $x \in X$. A partial uniformization of a set $R \subseteq X \times Y$ over an equivalence relation F on Y is a set $U \subseteq R$ such that $F \upharpoonright U_x = I(U_x)$ for all $x \in X$.

Given an equivalence relation E on a set X, the E-saturation of a set $Y \subseteq X$ is given by $|Y|_E = \{x \in X \mid \exists y \in Y \ x \ E \ y\}$, and a set $Y \subseteq X$ is E-complete if $X = |Y|_E$. A quasi-transversal of E over a subequivalence relation F is an E-complete set $Y \subseteq X$ for which there exists $k \in \mathbb{N}$ such that every $(E \upharpoonright Y)$-class is contained in a union of at most k F-classes. The following fact is a generalization of the Glimm–Effros dichotomy for countable Borel equivalence relations:

Theorem 1. Suppose that X is an analytic Hausdorff space, E is a Borel equivalence relation on X, F is a countable-index Borel subequivalence relation of E, and the projection onto the left coordinate of every $(\Delta(X) \times F)$-invariant Borel partial uniformization of E over F is Borel. Then exactly one of the following holds:

1. There is a partition $(B_n)_{n \in \mathbb{N}}$ of X into E-invariant Borel sets such that for all $n \in \mathbb{N}$, there is an F-invariant Borel quasi-transversal of $E \upharpoonright B_n$ over $F \upharpoonright B_n$.

2. There is a continuous embedding $\pi: 2^\mathbb{N} \times \mathbb{N} \hookrightarrow X$ of $(\mathbb{E}_0 \times I(\mathbb{N}), \Delta(2^\mathbb{N}) \times \Delta(\mathbb{N}))$ into (E, F) for which $[\pi(2^\mathbb{N} \times \mathbb{N})]_F$ is E-invariant.

Following the usual abuse of language, we say that a Borel equivalence relation is countable if all of its equivalence classes are countable. The special case of Theorem 1 where E is countable originally arose in a conversation with Marks, and was used to eliminate the need for determinacy in an argument due to Thomas.

A uniformization of a set $R \subseteq X \times Y$ is a set $U \subseteq R$ such that $|U_x| = 1$ for all $x \in \text{proj}_X(R)$. A Borel equivalence relation E on an analytic Hausdorff space X is smooth if there is a Borel reduction $\pi: X \to 2^\mathbb{N}$ of E to equality. Kechris has shown that the smooth Borel equivalence relations are precisely those with the property that every $(E \times \Delta(Y))$-invariant Borel set $R \subseteq X \times Y$ with countable vertical sections has an $(E \times \Delta(Y))$-invariant Borel uniformization (see [Kec201 Theorem 1.5]). He also asked the finer question as to the circumstances under which a given $(E \times \Delta(Y))$-invariant Borel set $R \subseteq X \times Y$ admits
such a uniformization. The following fact refines Kechris’s result and answers his question:

Theorem 2. Suppose that X and Y are Polish spaces, E is a Borel equivalence relation on X, and $R \subseteq X \times Y$ is an $(E \times \Delta(Y))$-invariant Borel set whose vertical sections are countable. Then exactly one of the following holds:

1. There is an $(E \times \Delta(Y))$-invariant Borel uniformization of R.
2. There are a continuous embedding $\pi_X : 2\mathbb{N} \times 2\mathbb{N} \hookrightarrow X$ of $E_0 \times I(\mathbb{N})$ into E and a continuous injection $\pi_Y : 2\mathbb{N} \times 2\mathbb{N} \hookrightarrow Y$ such that $R \cap (\pi_X(2\mathbb{N}) \times Y) = (\pi_X \times \pi_Y)(E_0 \times I(\mathbb{N}))$.

In §1, we establish a generalization of Theorem 1 in which F need not be contained in E, while simultaneously strengthening it so as to ensure that, in condition (2), distinct points map to points that are inequivalent with respect to a given smooth countable Borel subequivalence relation of E satisfying an additional technical property.

In §2, we establish a strengthening of Theorem 2 characterizing the circumstances under which $\text{proj}_X(R)$ is a countable union of E-invariant Borel sets on which R admits an $((E \times F) \upharpoonright R)$-invariant Borel quasi-uniformization over a given countable Borel equivalence relation F. Here, a quasi-uniformization of a set $R \subseteq X \times Y$ over an equivalence relation F on Y is a set U for which there exists $k \in \mathbb{Z}^+$ such that U_x is contained in a non-empty union of at most k F-classes for all $x \in \text{proj}_X(R)$.

1. Quasi-transversals

While the following two facts are consequences of their well-known analogs for E_0, we provide proofs for the reader’s convenience:

Proposition 1.1. Suppose that $B \subseteq 2\mathbb{N} \times \mathbb{N}$ is a non-meager set with the Baire property. Then there exists $(c, m) \in 2\mathbb{N} \times \mathbb{N}$ with the property that $B \cap ([c]_{E_0} \times \{m\})$ is infinite.

Proof. Fix $n \in \mathbb{N}$ and $s \in 2^{<\mathbb{N}}$ for which B is comeager in $\mathcal{N}_s \times \{n\}$ (see, for example, [Kec95, Proposition 8.26]). It is sufficient to show that for all $k \in \mathbb{N}$, there are comeagerly-many $c \in \mathcal{N}_s$ with the property that $B \cap ([c]_{E_0} \times \mathbb{N}) \cap (\mathcal{N}_s \times \{n\})$ has at least element k elements.

For each permutation σ of 2^k, let ϕ_σ be the corresponding homeomorphism of $\mathcal{N}_s \times \{n\}$, given by $\phi_\sigma(s \cdot t \cdot c)(0) = s \cdot \sigma(t) \cdot c$ for all $c \in 2^k$ and $t \in 2^k$. Then there are comeagerly-many $c \in \mathcal{N}_s$ with the property that $\phi_\sigma(c, n) \in B$ for all permutations σ of 2^k (see, for example, [Kec95, Exercise 8.45]), and clearly $B \cap ([c]_{E_0} \times \mathbb{N}) \cap (\mathcal{N}_s \times \{n\})$ has at least 2^k elements for every such c.

\[\square \]
Proposition 1.2. Suppose that E and F are equivalence relations on $2^\mathbb{N} \times \mathbb{N}$ with the Baire property, every E-class is a countable union of $(E \cap F)$-classes, and $F \cap (\mathbb{E}_0 \times \Delta(\mathbb{N})) = \Delta(2^\mathbb{N}) \times \Delta(\mathbb{N})$. Then E and F are meager.

Proof. Suppose, towards a contradiction, that F is not meager. As F has the Baire property, the Kuratowski-Ulam theorem (see, for example, [Kec95, Theorem 8.41]) yields an F-class C with the Baire property that is not meager. But $(\mathbb{E}_0 \times \Delta(\mathbb{N})) \uparrow C \nsubseteq \Delta(2^\mathbb{N}) \times \Delta(\mathbb{N})$ by Proposition 1.1, the desired contradiction. It follows that F is meager.

The Kuratowski-Ulam theorem now ensures that every F-class is meager, in which case every $(E \cap F)$-class is meager, so every E-class is meager, thus E is meager. \hfill \Box

An invariant embedding of an equivalence relation E on X into an equivalence relation F on Y is an embedding $\phi: X \hookrightarrow Y$ of E into F for which $\phi(X)$ is F-invariant.

Proposition 1.3. Suppose that $U \subseteq 2^\mathbb{N} \times \mathbb{N}$ is a non-empty open set. Then there is a continuous invariant embedding $\pi: 2^\mathbb{N} \times \mathbb{N} \hookrightarrow U$ of $\mathbb{E}_0 \times I(\mathbb{N})$ into $(\mathbb{E}_0 \times I(\mathbb{N})) \uparrow U$.

Proof. Fix $S \subseteq (\bigcup_{n \in \mathbb{N}} 2^{2n}) \times \mathbb{N}$ such that $\{ \mathcal{N}_s \times \{n\} \mid (s, n) \in S \}$ partitions U, as well as an injective enumeration $((s_k, n_k), t_k)_{k \in \mathbb{N}}$ of $S \times \{ c \in 2^\mathbb{N} \mid \exists n \in \mathbb{N} \forall m \geq n \, c(m) = 0 \}$, and define $\pi: 2^\mathbb{N} \times \mathbb{N} \to U$ by

$$\pi(c, k)(0)(i) = \begin{cases} s_k(i) & \text{if } i < |s_k|, \\ c((i - 1)/2) & \text{if } i \geq |s_k| \text{ is odd,} \\ t_k((i - 2|s_k|)/2) & \text{if } i \geq 2|s_k| \text{ is even, and} \\ c((i - |s_k|)/2) & \text{otherwise}, \end{cases}$$

and $\pi(c, k)(1) = n_k$. \hfill \Box

A homomorphism from a sequence $(R_i)_{i \in I}$ of binary relations on a set X to a sequence $(S_i)_{i \in I}$ of binary relations on a set Y is a function $\phi: X \to Y$ that is a homomorphism from R_i to S_i for all $i \in I$.

Proposition 1.4. Suppose that R is a meager binary relation on $2^\mathbb{N} \times \mathbb{N}$. Then there is a continuous injective homomorphism $\phi: 2^\mathbb{N} \times \mathbb{N} \hookrightarrow 2^\mathbb{N} \times \mathbb{N}$ from $(\mathbb{E}_0 \times I(\mathbb{N}), \neg(I_0 \times I(\mathbb{N})))$ to $(\mathbb{E}_0 \times I(\mathbb{N}), \neg R)$ such that $\forall c \in 2^\mathbb{N} \phi([c]_{\mathbb{E}_0 \times \mathbb{N}})$ is an $(\mathbb{E}_0 \times I(\mathbb{N}))$-class.

Proof. Set $d_0 = r_0 = 1$ and $\ell_0 = 0$, and fix a decreasing sequence $(U_n)_{n \in \mathbb{N}}$ of dense open symmetric subsets of $(2^\mathbb{N} \times \mathbb{N}) \times (2^\mathbb{N} \times \mathbb{N})$ whose intersection is disjoint from R, as well as $\phi_0: 2^\mathbb{N} \times d_0 \leftrightarrow 2^{\ell_0} \times r_0$.

Lemma 1.5. Suppose that \(n \in \mathbb{N}, d_n, \ell_n, r_n \in \mathbb{N} \), and \(\phi_n : 2^n \times d_n \leftrightarrow 2^{\ell_n} \times r_n \) is a bijection. Then there exist \(d_{n+1} > d_n, \ell_{n+1} > \ell_n, r_{n+1} > r_n \),
and a bijection \(\phi_{n+1} : 2^{n+1} \times d_{n+1} \leftrightarrow 2^{\ell_{n+1}} \times r_{n+1} \) such that:

1. \(\forall i < 2 \forall (t, m) \in 2^n \times d_n \ (\phi_n(t, m)(0) \subseteq \phi_{n+1}(t \setminus (i), m)(0) \) and \(\phi_n(t, m)(1) = \phi_{n+1}(t \setminus (i), m)(1) \)).
2. \(\forall i, j < 2 \forall (t, m) \in (2^n \times 2^n) \times (d_n \times d_n) \)
 \((i = j \iff \forall \ell \in [\ell_n, \ell_{n+1}) \phi_{n+1}(t(0) \setminus (i), m(0))(0)(\ell) = \phi_{n+1}(t(1) \setminus (i), m(1))(0)(\ell)) \).
3. \(\forall (t, m) \in (2^n \times 2^n) \times (d_n \times d_n) \)
 \(\prod_{i \leq 2} \mathcal{N}_{\phi_{n+1}(t(i) \setminus (i), m(i))(0)} \times \{ \phi_{n+1}(t(i) \setminus (i), m(i))(1) \} \subseteq U_n \).

Proof. Fix an enumeration \((t_k, m_k)_{k \leq 2^n d_n^2} \) of \((2^n \times 2^n) \times (d_n \times d_n) \), as well as any pair \(u_0 \in 2^{< \mathbb{N}} \times 2^{< \mathbb{N}} \) such that \(\forall i < 2 \ u_0(i) \not\subseteq u_0(1 - i) \).

Given \(k < 4^n d_n^2 \) and \(u_k \in 2^{< \mathbb{N}} \times 2^{< \mathbb{N}} \), fix \(u_{k+1} \in 2^{< \mathbb{N}} \times 2^{< \mathbb{N}} \) such that:

- \(\forall i < 2 \ u_k(i) \not\subseteq u_{k+1}(i) \).
- \(\prod_{i < 2} \mathcal{N}_{\phi_{n}(t_k(i), m_k(i))(0)} \times \{ \phi_{n}(t_k(i), m_k(i))(1) \} \subseteq U_n \).

Fix \(\ell_n \geq \ell_n \) and \(u \in 2^{\ell_{n+1} - \ell_n} \times 2^{\ell_{n+1} - \ell_n} \) such that \(u_0 \cap u \) for all \(i < 2 \). Let \(d_{n+1} = 2^{\ell_{n+1} - \ell_n} d_n \) and \(r_{n+1} = 2 r_n \).

Then \(2^{n+1} d_{n+1} = 2^{\ell_{n+1} - \ell_n} d_n, r_{n+1} = 2 r_n \) in which case there is a bijection \(\phi_{n+1} : 2^{n+1} \times d_{n+1} \leftrightarrow 2^{\ell_{n+1}} \times r_{n+1} \) with the property that \(\phi_{n+1}(t \setminus (i), m)(0) = \phi_n(t, m)(0) \cup u(i) \) and \(\phi_{n+1}(t \setminus (i), m)(1) = \phi_n(t, m)(1) \) for all \((t, m) \in 2^n \times d_n \).

As \(\phi_n(t, m) \subseteq \phi_{n+1}(t \setminus (i), m) \) for all \(i < 2, n \in \mathbb{N} \), and \((t, m) \in 2^n \times d_n \), we obtain a continuous function \(\phi : 2^N \times N \rightarrow 2^N \times N \) by setting \(\phi(c, m) = \bigcup_{n \geq m} \phi_n(c \upharpoonright n, m) \) for all \(c \in 2^N \) and \(m \in \mathbb{N} \).

To see that \(\phi \) is a homomorphism from \(\mathbb{E}_0 \times I(\mathbb{N}) \) to \(\mathbb{E}_0 \times I(\mathbb{N}) \), observe that if \(c \in \mathbb{E}_0 \times I(\mathbb{N}) \), then there exists \(n \geq \max_{i < 2} c(i)(1) \) with the property that \(\forall m \geq n \ c(0)(m) = c(1)(m) \), in which case \(\forall m \geq n \ \phi(c(0))(0)(m) = \phi(c(1))(0)(m) \).

To see that \(\phi \) is a homomorphism from \(\sim (\mathbb{E}_0 \times I(\mathbb{N})) \) to \(\sim R \), note that if \(c \in \sim (\mathbb{E}_0 \times I(\mathbb{N})) \), then there are infinitely many \(n \geq \max_{i < 2} c(i)(1) \) with the property that \(\phi(c(i))(i \leq 2) \in \prod_{i < 2} \mathcal{N}_{\phi_{n+1}(c(i)(0)|(n+1), c(i)(1))(0)} \times \{ \phi_{n+1}(c(i)(0) \geq n + 1, c(i)(1))(1) \} \subseteq U_n \), so \(\phi(c(i))(i \leq 2) \sim R \).

It remains to note that if \((c, m) \in 2^N \times N \), then \(\phi([(c, m)]_{\mathbb{E}_0 \times I(\mathbb{N})}) = \bigcup_{n \geq m} \phi([c \upharpoonright m \times d_n]) = \bigcup_{n \geq m} \phi([c, m][c, m]|_{r_n \times I(r_n)} = [\phi(c, m)]_{\mathbb{E}_0 \times I(\mathbb{N})} \).

Given \(n \in \mathbb{N} \), an equivalence relation \(F \) on \(2^n \times (n + 1) \), let \(F^* \) denote the corresponding equivalence relation on \(2^n \times (n + 1) \) given by \((c, \ell) F^*(d, m) \iff (c \upharpoonright n, \ell) F (d \upharpoonright n, m) \) and \(\forall k \geq n \ c(k) = d(k) \).

A one-step extension of \(F \) is an equivalence relation \(F' \) on \(2^{n+1} \times (n + 2) \)
Proposition 1.6. Suppose that there is a clopen transversal one-step extension of F has the further property that for all $i < 2$ and $(s, \ell), (t, m) \in 2^n \times (n + 1)$, and such an extension is splitting if it has the further property that $\neg(s \sim (i), \ell) F' (t \sim (1 - i), m)$ for all $i < 2$. A sequence $(F_n)_{n \in \mathbb{N}}$ is suitable if F_0 is the unique equivalence relation on $2^0 \times 1$, and F_{n+1} is a splitting one-step extension of F_n for all $n \in \mathbb{N}$.

Proof. Fix the unique transversal S_0 of F_0, and given a transversal S_n of F_n, fix a transversal $S_{n+1} \supseteq \{(t \sim (i), m) \mid i < 2 \text{ and } (t, m) \in S_n\}$ of F_{n+1}. Set $S^* = \{(t \sim c, m) \mid c \in 2^n \text{ and } (t, m) \in S\}$ for all $n \in \mathbb{N}$ and $S \subseteq 2^n \times (n + 1)$, and define $U = \bigcup_{n \in \mathbb{N}} S^*_n$.

We can now establish our primary technical result.

Theorem 1.7. Suppose that X is an analytic Hausdorff space, E is a Borel equivalence relation on X, F is a countable-index Borel subequivalence relation of E for which the projection onto the left coordinate of every $(\Delta(X) \times F)$-invariant Borel partial uniformization of E over F is Borel, and F_\perp is a Borel subequivalence relation of E for which the E-saturation of every F_\perp-invariant Borel partial quasi-transversal of E over F_\perp is Borel. Then at least one of the following holds:

1. There is a partition $(B_n)_{n \in \mathbb{N}}$ of X into E-invariant Borel sets such that for all $n \in \mathbb{N}$, at least one of the following holds:
 a. There is an F-invariant $(E \upharpoonright B_n)$-complete Borel partial quasi-transversal $A_n \subseteq B_n$ of F over $F \cap F_\perp$.
 b. There is an F_\perp-invariant Borel quasi-transversal $A_n \subseteq B_n$ of $E \upharpoonright B_n$ over $F \upharpoonright F_\perp$ for some $F_\perp \in \{F, F_\perp\}$.
2. There exist a suitable sequence $(F_n)_{n \in \mathbb{N}}$ and a continuous homomorphism $\pi: 2^\mathbb{N} \times \mathbb{N} \to X$ from $(F^* \setminus (\Delta(2^\mathbb{N}) \times \Delta(\mathbb{N}))), (\mathbb{E}_0 \times I(\mathbb{N})) \setminus F^*$ to $(F \setminus F_\perp, E \setminus (F \cup F_\perp))$ with the property that $\forall c \in 2^\mathbb{N}, [\pi([c]_{\mathbb{E}_0} \times \mathbb{N})]_F$ is an E-class, where $F^* = \bigcup_{n \in \mathbb{N}} F^*_n$.

Proof. By [Mil20, Theorem 2.7], there are $(\Delta(X) \times F)$-invariant Borel partial uniformizations R_n of E over F for which $E = \bigcup_{n \in \mathbb{N}} R_n$.

Lemma 1.8. Every $(\Delta(X) \times F)$-invariant Borel partial uniformization R of E over F is contained in a $(\Delta(X) \times F)$-invariant Borel uniformization S of E over F.

Proof. Set $S_0 = R$, recursively define $S_{n+1} = (R_n \setminus (\text{proj}_0(S_n) \times Y)) \cup S_n$ for all $n \in \mathbb{N}$, and observe that the set $S = \bigcup_{n \in \mathbb{N}} S_n$ is as desired.
We can clearly assume that $R_0 = F$, and by Lemma 1.8, we can assume that each R_n is a $(\Delta(X) \times F)$-invariant Borel uniformization of E over F.

We can also assume that $F \setminus F_\perp \neq \emptyset$, since otherwise X is a transversal of F over $F \cap F_\perp$.

Finally, we can assume that $E \setminus (F \cup F_\perp) \neq \emptyset$. To see this, suppose otherwise, and define $A = \{x \in X \mid [x]_E \not\subseteq [x]_F\}$. Note that if $x \in A$, then there exists $y \in [x]_E \setminus [x]_F$, in which case $[y]_F \cup [y]_{F_\perp} \subseteq [x]_{F_\perp}$, so $[x]_E = [x]_{F_\perp}$, thus A is a partial transversal of E over F_\perp. By [Mii20, Proposition 2.1], there is an F_\perp-invariant Borel partial transversal $B \subseteq X$ of E over F_\perp containing A. But then $\sim |B|_E$ is an E-invariant Borel partial transversal of E over F.

It now follows that there are continuous surjections $\phi_X : \mathbb{N}^n \to X$, $\phi_{F,F_\perp} : \mathbb{N}^n \to F \setminus F_\perp$, $\phi_{E \setminus (F \cup F_\perp)} : \mathbb{N}^n \to E \setminus (F \cup F_\perp)$, and $\phi_{R_n} : \mathbb{N}^n \to R_n$ for all $n \in \mathbb{N}$. Define $\phi_{E \setminus F_\perp} : \mathbb{N}^n \times 2 \to E \setminus F_\perp$ by

$$\phi_{E \setminus F_\perp}(b,i) = \begin{cases} \phi_{F \setminus F_\perp}(b) & \text{if } i = 1, \\ \phi_{E \setminus (F \cup F_\perp)}(b) & \text{otherwise.} \end{cases}$$

We will recursively define a decreasing sequence $(B^n)_{a < \omega_1}$ of E-invariant Borel subsets of X, off of which condition (1) holds. We begin by setting $B^0 = X$. For all limit ordinals $\lambda < \omega_1$, we set $B^\lambda = \bigcap_{\alpha < \lambda} B^\alpha$. To describe the construction at successor ordinals, we require several preliminaries.

An approximation is a sextuple $a = (n^a, D^a, F^a, \psi_X^a, \psi_R^a, \psi_{E \setminus F_\perp}^a)$ with the property that $n^a \in \mathbb{N}$, D^a is a lexicographically downward-closed subset of $(n^a+1) \times 2^{n^a}$ containing $n^a \times 2^{n^a}$, F^a is an equivalence relation on D^a, $\psi_{\ast}^a : D^a \to \mathbb{N}^{n^a}$ for all $\ast \in \{X, R\}$, and $\psi_{E \setminus F_\perp}^a : D^a \times D^a \to \mathbb{N}^{n^a}$.

If a is an approximation for which $D^a \neq (n^a+1) \times 2^{n^a}$, then a one-step extension of a is an approximation b such that:

- $n^b = n^a$.
- $D^a = D^b \setminus \{ \max_{\text{lex}} D^b \}$.
- $F^a = F^b \upharpoonright D^a$.
- $\forall \ast \in \{X, R\} \psi_{\ast}^a = \psi_{\ast}^b \upharpoonright D^a$.
- $\psi_{E \setminus F_\perp}^a = \psi_{E \setminus F_\perp}^b \upharpoonright (D^a \times D^a)$.

If a is an approximation for which $D^a = (n^a+1) \times 2^{n^a}$, then a one-step extension of a is an approximation b such that:

- $n^b = n^a + 1$.
- $D^b = n^b \times 2^{n^b}$.
\[\forall i < 2\forall(m, s), (n, t) \in D^a \]
\[(m, s) F^a (n, t) \iff (m, s \land (i)) F^b (n, t \land (1 - i)) \land (m, s \land (i)) F^b (n, t \land (1 - i)). \]
\[\forall i < 2\forall(m, s), (n, t) \in D^a \]
\[\psi^b_{E \setminus F}((m, s), (n, t)) \subseteq \psi^b_{E \setminus F}((m, s \land (i)), (n, t \land (i))). \]

A configuration is a sextuple \(\gamma = (n^\gamma, D^\gamma, F^\gamma, \psi_X^\gamma, \psi_R^\gamma, \psi_{E \setminus F}^\gamma) \) with the property that \(n^\gamma \in \mathbb{N}, D^\gamma \) is a lexicographically downward-closed subset of \((n^\gamma + 1) \times 2^{n^\gamma} \) containing \(n^\gamma \times 2^{n^\gamma} \), \(F^\gamma \) is an equivalence relation on \(D^\gamma \), \(\psi^\gamma : D^\gamma \rightarrow \mathbb{N}^\mathbb{N} \) for all \(* \in \{ X, R \} \), \(\psi_{E \setminus F}^\gamma : D^\gamma \times D^\gamma \rightarrow \mathbb{N}^\mathbb{N} \), \(\phi_R \circ \psi_R^\gamma(n, t) = ((\phi_X \circ \psi_X^\gamma)(0, t), (\phi_R \circ \psi_R^\gamma)(0, t)) \) for all \((n, t) \in D^\gamma \), and \(\phi_{E \setminus F} \circ (\psi_{E \setminus F}^\gamma \times 1_{F^\gamma})(n, t) \) for all \((m, s), (n, t) \in D^\gamma \). We say that \(\gamma \) is compatible with an \(E \)-invariant set \(X' \subseteq X \) if \(\phi_X \circ \psi_X^\gamma(D^\gamma) \subseteq X' \), and compatible with an approximation \(a \) if:

- \((n^a, D^a, F^a) = (n^\gamma, D^\gamma, F^\gamma) \).
- \(\forall \gamma \in \{ X, R \} \forall(n, t) \in D^a \psi_a^\gamma(n, t) \subseteq \psi^\gamma(n, t) \).
- \(\forall(m, s), (n, t) \in D^a \psi_{E \setminus F}^a((m, s), (n, t)) \subseteq \psi_{E \setminus F}^\gamma((m, s), (n, t)). \)

We say that an approximation \(a \) is \(X' \)-terminal if no configuration is compatible with both \(X' \) and a one-step extension of \(a \).

For each configuration \(\gamma \) such that \(D^\gamma \neq (n^\gamma + 1) \times 2^{n^\gamma} \), let \(t^\gamma \) be the lexicographically minimal element of \((n^\gamma + 1) \times 2^{n^\gamma} \) not in \(D^\gamma \), and set \(C^\gamma = (R^\gamma)_{(\phi_X \circ \psi_X^\gamma)(0, t^\gamma)} \). For each approximation \(a \) with the property that \(D^a \neq (n^a + 1) \times 2^{n^a} \) and each set \(X' \subseteq X \), define \(A'(a, X') = \cup\{ C^\gamma \mid \gamma \text{ is compatible with } a \text{ and } X' \} \).

Lemma 1.9. Suppose that \(X' \subseteq X \) is E-invariant and \(a \) is an \(X' \)-terminal approximation for which \(D^a \neq (n^a + 1) \times 2^{n^a} \). Then \(A'(a, X') \) is a partial quasi-transversal of \(F \) over \(F \cap F_L \).

Proof. Suppose, towards a contradiction, that there is a configuration \(\gamma \), compatible with \(a \) and \(X' \), with the property that \(C^\gamma \) contains strictly more than \(|D^\gamma| \) \((F \cap F_L) \)-classes, in which case there exists \(y \in C^\gamma \setminus \{(\phi_X \circ \psi_X^\gamma)(D^\gamma)\}_{F \cap F_L} \). Define \(n^\delta = n^a \), as well as \(D^\delta = D^a \cup \{(n^a, t^a)\} \), and fix an extension \(\psi_X^\delta \) of \(\psi_X^\gamma \) to \(D^\delta \) for which \((\phi_X \circ \psi_X^\delta)(n^a, t^a) = y \). Let \(F^\delta \) be the equivalence relation on \(D^\delta \) given by \(F^\delta \mid D^\gamma = F^\gamma \mid D^\gamma \) and \((n, t) F^\delta (n^a, t^a) \iff (\phi_X \circ \psi_X^\gamma)(n, t) F (\phi_X \circ \psi_X^\delta)(n^a, t^a) \) for all \((n, t) \in D^\delta \), fix an extension \(\psi_R^\delta \) of \(\psi_R^\gamma \) to \(D^\delta \) for which \((\phi_R \circ \psi_R^\delta)(n^a, t^a) = y \), and fix an extension \(\psi_{E \setminus F}^\delta \) of \(\psi_{E \setminus F}^\gamma \) to \(D^\delta \times D^\delta \) such that \((\phi_{E \setminus F} \circ (\psi_{E \setminus F}^\delta \times 1_{F^\delta}))(n, s), (n, t)) = ((\phi_X \circ \psi_X^\gamma)(n, s), (\phi_X \circ \psi_X^\gamma)(n, t)) \) for all \((m, s), (n, t) \in D^\delta \) such that
\((n^a, t^a) \in \{(m, s), (n, t)\}\). Then \(\delta\) is compatible with a one-step extension of \(a\), contradicting the fact that \(a\) is \(X'\)-terminal.

Set \(X = X \times \{F, F_\perp\}\) and \(E = E \times I(\{F, F_\perp\})\), and define \(\overline{F}\) on \(X\) by \((x, F_*) \overline{F} (x', F'_*) \iff (F_* = F'_* \text{ and } x \in F_* \text{ or } x' \in F'_*)\). For each configuration \(\gamma\), set \(A^\gamma = (\phi_X \circ \phi_X)(D^\gamma)\), and for each approximation \(a\) with the property that \(D^a = (n^a + 1) \times 2^n\) and each \(E\)-invariant set \(X' \subseteq X\), define \(\mathcal{A}(a, X') = \{A^\gamma \mid \gamma\ \text{is compatible with } a \text{ and } X'\}\) and \(\overline{\mathcal{A}}(a, X') = \{A^\gamma \times \{F, F_\perp\} \mid \gamma\ \text{is compatible with } a \text{ and } X'\}\). We say that a family \(\overline{\mathcal{A}}\) of subsets of \(X\) is \(\overline{F}\)-intersecting if all distinct sets in \(\overline{\mathcal{A}}\) have disjoint \(\overline{F}\)-saturations, and \(\overline{E}\)-locally \(\overline{F}\)-intersecting if for every \(\overline{E}\)-class \(C\), the family \(\overline{\mathcal{A}}\mid C = \{A \in \overline{\mathcal{A}} \mid A \subseteq C\}\) is \(\overline{F}\)-intersecting.

Lemma 1.10. Suppose that \(X' \subseteq X\) and \(a\) is an \(X'\)-terminal approximation for which \(D^a = (n^a + 1) \times 2^n\). Then \(\overline{\mathcal{A}}(a, X')\) is \(\overline{E}\)-locally \(\overline{F}\)-intersecting.

Proof. Suppose, towards a contradiction, that there are configurations \(\gamma_0\) and \(\gamma_1\), both compatible with \(a\) and \(X'\), such that \(A^{\gamma_0}\) and \(A^{\gamma_1}\) are contained in the same \(E\)-class, but have disjoint \(F\)-saturations and disjoint \(F_\perp\)-saturations. Define functions \(\psi_{E,F_\perp}^\delta : D^\delta \to \mathbb{N}^\delta \) by \(\psi_{E,F_\perp}^\delta((m, s), (n, t) \in (i)) = \psi_{E,F_\perp}^\delta((m, s), (n, t) \in (1 - i))\) for all \(i \in \{X, R\}\), \(i \neq 2\), and \((m, s), (n, t) \in D^\delta\), let \(F_\perp^\delta\) be the equivalence relation on \(D^\delta\) given by \((m, s) F_\perp^\delta (n, t) \iff (\phi_X \circ \psi_{E,F_\perp}^\delta)(m, s) F_\perp (\phi_X \circ \psi_{E,F_\perp}^\delta)(n, t)\) for all \((m, s), (n, t) \in D^\delta\), and fix \(\psi_{E,F_\perp}^\delta : D^\delta \times D^\delta \to \mathbb{N}^\delta\) such that \(\psi_{E,F_\perp}^\delta((m, s), (n, t)) = \psi_{E,F_\perp}^\delta((m, s), (n, t))\) for all \(i \in \{X, R\}\), \(i \neq 2\), and \((m, s), (n, t) \in D^\delta\). Then \(\delta\) is compatible with a one-step extension of \(a\), contradicting the fact that \(a\) is \(X'\)-terminal.

Suppose that \(a\) is \(B^a\)-terminal. If \(D^a \neq (n^a + 1) \times 2^n\), then Lemma 1.9 and [Mil20, Proposition 2.1] yield an \(F\)-invariant Borel partial quasi-transversal \(A(a, B^a)\) of \(F\) over \(F \cap F_\perp\) containing \(A'(a, B^a)\), in which case we define \(B(a, B^a) = [A(a, B^a)]_E\). A set \(Y \subseteq X\) punctures a family \(\mathcal{A}\) of subsets of \(X\) if \(A \cap Y \neq \emptyset\) for all \(A \in \mathcal{A}\). If \(D^a = (n^a + 1) \times 2^n\), then Lemma 1.10 and [Mil20, Proposition 4.1] yield an \(\overline{F}\)-invariant Borel partial quasi-transversal \(\overline{A}(a, B^a)\) of \(\overline{E}\) over \(\overline{F}\) puncturing \(\overline{\mathcal{A}}(a, B^a)\), and it follows that the set \(\overline{A}_F(a, B^a) = \{x \in X \mid (x, F_*) \in \overline{A}(a, B^a)\}\) is an \(F_\ast\)-invariant Borel partial transversal of \(\overline{E}\) over \(\overline{F}_\ast\) for all \(F_\ast \in \{F, F_\perp\}\). The set \(\bigcup_{F_\ast \in \{F, F_\perp\}} \overline{A}_F(a, B^a)\) punctures \(\overline{A}(a, B^a)\), in which case we define \(B(a, B^a) = \bigcup_{F_\ast \in \{F, F_\perp\}} [A_F(a, B^a)]_E\).
Let $B^{\alpha+1}$ be the set obtained from B^α by subtracting the union of the sets of the form $B(a, B^\alpha)$, where a varies over all B^α-terminal approximations.

Lemma 1.11. Suppose that $\alpha < \omega_1$ and a is a non-$B^{\alpha+1}$-terminal approximation. Then a has a non-B^α-terminal one-step extension.

Proof. Fix a one-step extension b of a for which there is a configuration γ compatible with b and $B^{\alpha+1}$. Then $(\phi_X \circ \phi_X^{-1})(D^\gamma) \subseteq B^{\alpha+1}$, so b is not B^α-terminal.

Fix $\alpha < \omega_1$ such that the families of B^α- and $B^{\alpha+1}$-terminal approximations coincide, and let a_0 be the approximation given by $n^{a_0} = 0$ and $D^{a_0} = 1 \times 2^0$. As $\overline{\mathcal{A}}(a_0, X') = \{(x, F_*) \mid F_* \in \{F, F_{\perp}\}\mid x \in X'\}$ for all E-invariant sets $X' \subseteq X$, we can assume that a_0 is not B^α-terminal, since otherwise $B^{\alpha+1} = \emptyset$, so condition (1) holds.

By recursively applying Lemma 1.11, we obtain non-B^α-terminal one-step extensions a_{n+1} of a_n for all $n \in \mathbb{N}$. Let $(a_n)_{n \in \mathbb{N}}$ be the unique subsequence such that $D^{a_n} = (n+1) \times 2^n$ for all $n \in \mathbb{N}$. Define $F_n = F_{a_n}$ for all $n \in \mathbb{N}$, $\psi_n : 2^n \times \mathbb{N} \to \mathbb{N}$ by $\psi_n(c, m) = \bigcup_{n \geq m} \psi^a_n(m, c(0) \mid n)$ for all $* \in \{X, R\}$, and $\psi_{E \setminus F_{\perp}} : \mathbb{E}_0 \times I(\mathbb{N}) \to \mathbb{N}$ by $\psi_{E \setminus F_{\perp}}((b, \ell), (c, m)) = \bigcup_{n \geq \min(b, \ell), (c, m)} \psi_{E \setminus F_{\perp}}(\psi^a_n((\ell, b \mid n), (m, c \mid n)))$, where $n((b, \ell), (c, m))$ is the least natural number $n \geq \max\{\ell, m\}$ such that $\forall k \geq n$ $b(k) = c(k)$. We will show that the function $\pi = \phi_X \circ \psi_X$ is as desired.

To see that $\forall c \in 2^N \mid [\pi([c]_{\mathbb{E}_0} \times \mathbb{N})]_F$ is an E-class, we will show that if $c \in 2^N$ and $m \in \mathbb{N}$, then $(\phi_{R_{\mathbb{E}}} \circ \phi_R)(c, m) = (\pi(c, 0), \pi(c, m))$. As $X \times X$ is a Hausdorff space, it is sufficient to show that if U is an open neighborhood of $(\pi(c, 0), \pi(c, m))$ and V is an open neighborhood of $(\phi_{R_{\mathbb{E}}} \circ \phi_R)(c, m)$, then $U \cap V \neq \emptyset$. Towards this end, fix $n \geq m$ such that $\phi_X(\mathcal{N}_{\psi_X^a|_{(0,c|m)}} \times \phi_X(\mathcal{N}_{\psi_X^a|_{(m,c|m)}}) \subseteq U$ and $\phi_{R_{\mathbb{E}}} \circ \phi_R)(\mathcal{N}_{\psi_X^a|_{(0,c|m)}} \times \phi_X(\mathcal{N}_{\psi_X^a|_{(m,c|m)}}) \subseteq V$. As a_n is not B^α-terminal, there is a configuration γ compatible with a_n, in which case $(\phi_X \circ \psi_X^\gamma(0, c \mid n), (\phi_X \circ \psi_X^\gamma)(m, c \mid n)) \in U$ and $(\phi_{R_{\mathbb{E}}} \circ \phi_R^\gamma)(m, c \mid n) \in V$, thus $U \cap V \neq \emptyset$.

It now only remains to establish that π is a homomorphism from $(F^* \setminus (\Delta(2^\mathbb{N}) \times \Delta(\mathbb{N}))), (\mathbb{E}_0 \times I(\mathbb{N}))(F^* \setminus F_{\perp}, (E \setminus (F \cup F_{\perp}))).$ We will show the stronger fact that if $b \mathbb{E}_0 c$ and $\ell, m \in \mathbb{N}$, then $(\phi_{E \setminus F_{\perp}} \circ \psi_{E \setminus F_{\perp}} \times \mathbf{1}_{F^*})(b, \ell), (c, m)) = (\pi(b, \ell), (c, m))$. As $X \times X$ is a Hausdorff space, it is sufficient to show that if U is an open neighborhood of $(\pi(b, \ell), (c, m))$ and V is an open neighborhood of $(\phi_{E \setminus F_{\perp}} \circ \psi_{E \setminus F_{\perp}} \times \mathbf{1}_{F^*})(b, \ell), (c, m))$, then $U \cap V \neq \emptyset$. Towards this end, set $n = n((b, \ell), (c, m))$, and note that $\phi_X(\mathcal{N}_{\psi_X^a|_{(0,b|m)}} \times \phi_X(\mathcal{N}_{\psi_X^a|_{(m,c|m)}}) \subseteq U$ and $\phi_{E \setminus F_{\perp}}(\mathcal{N}_{\psi_X^a|_{(0,b|m)}} \times \mathbf{1}_{F^*})(b, \ell), (c, m))) \subseteq V$. As a_n is not B^α-terminal, there exists a configuration γ compatible with a_n,.
in which case \((\phi_X \circ \psi^\gamma_X)(\ell, b \upharpoonright n), (\phi_X \circ \psi^\gamma_X)(m, c \upharpoonright n)) \in U\) and \(\phi_E(\psi^\gamma_{E\setminus F})(((\ell, b \upharpoonright n), (m, c \upharpoonright n)), 1_{F^*}((b, \ell), (c, m))) \in V\), and it follows that \(U \cap V \neq \emptyset\).

Remark 1.12. The apparent use of choice beyond \(\mathsf{DC}\) in the above argument can be eliminated by first running the analog of the argument without \([\text{Mil}20]\) Proposition 2.1 and replacing the use of \([\text{Mil}20]\) Propositions 4.1] with the use of its weakening without any definability constraints on the partial quasi-transversal puncturing the family (which can be proven in the same manner, but without using \([\text{Mil}20]\) Proposition 2.1]), in order to obtain an upper bound \(\alpha' < \omega_1\) on the least ordinal \(\alpha < \omega_1\) for which the sets of \(B^\alpha\)- and \(B^{\alpha+1}\)-terminal approximations coincide.

The composition of relations \(R\) on \(X \times Y\) and \(S\) on \(Y \times Z\) is given by \(R \circ S = \{(x, z) \in X \times Z \mid \exists y \in Y \; x R y \; R z\}\).
Suppose that \(E = (E \cap F) \circ F_\perp \). Then exactly one of the following holds:

1. There exist a partition \((B_n)_{n \in \mathbb{N}} \) of \(X \) into \(E \)-invariant Borel sets such that for all \(n \in \mathbb{N} \), there is an \((E \cap F) \)-invariant Borel quasi-transversal \(A_n \subseteq B_n \) of \(E \upharpoonright B_n \) over \((E \cap F) \upharpoonright B_n \).

2. There is a continuous embedding \(\pi : 2^\mathbb{N} \times \mathbb{N} \to X \) of \((E_0 \times I(\mathbb{N}), \Delta(2^\mathbb{N}) \times \Delta(\mathbb{N}))\) into \((E, F \cup F_\perp)\) for which \([\pi(2^\mathbb{N} \times \mathbb{N})]_{E \cap F}\) is \(E \)-invariant.

Proof. To see that conditions (1) and (2) are mutually exclusive, note that if both hold, then there exists \(n \in \mathbb{N} \) for which \(\pi^{-1}(A_n) \) is not meager, thus \(\pi^{-1}(A_n) \) is not meager, contradicting Proposition 1.1.

Note that if \(A \subseteq X \) is an \(E \)-invariant Borel set for which there is an \(F_\perp \)-invariant Borel quasi-transversal of \(E \upharpoonright A \) over \(F_\perp \upharpoonright A \), then the smoothness of \(F_\perp \) and \textit{[HKL90, Theorem 1.1]} ensures that \(E \upharpoonright A \) is smooth. Moreover, if \(B \subseteq X \) is an \(E \)-invariant Borel set for which there is an \((E \upharpoonright B) \)-complete \((E \cap F) \)-invariant Borel partial quasi-transversal of \(E \cap F \) over \(E \cap F \cap F_\perp \), then \(B \) is a Borel partial quasi-transversal of \(E \) over \(F_\perp \), so \(E \upharpoonright B \) is smooth.

By \textit{[Mil20, Theorem 2.6]} and Theorem 1.7, we can therefore assume that there is a suitable sequence \((F_n)_{n \in \mathbb{N}}\) and a continuous homomorphism \(\phi : 2^\mathbb{N} \times \mathbb{N} \to X \) from \((F^* \setminus (\Delta(2^\mathbb{N}) \times \Delta(\mathbb{N})), (E_0 \times I(\mathbb{N})) \setminus F^*)\) to \(((E \cap F) \setminus F_\perp, E \setminus (F \cup F_\perp))\) such that \(\forall c \in 2^\mathbb{N} \ [\phi([c]_{E_0 \times \mathbb{N}})]_{E \cap F} \) is an \(E \)-class, where \(F^* = \bigcup_{n \in \mathbb{N}} F_n^* \). As Proposition 1.6 yields a clopen transversal \(U \subseteq 2^\mathbb{N} \times \mathbb{N} \) of \(F^* \), Proposition 1.3 gives rise to a continuous invariant embedding \(\chi : 2^\mathbb{N} \times \mathbb{N} \to U \) of \(E_0 \times I(\mathbb{N}) \) into \((E_0 \times I(\mathbb{N})) \setminus U\), in which case \(\phi \circ \chi \) is a continuous homomorphism from \((E_0 \times I(\mathbb{N})) \setminus (\Delta(2^\mathbb{N}) \times \Delta(\mathbb{N}))\) to \(E \setminus (F \cup F_\perp)\) with the property that \(\forall c \in 2^\mathbb{N} \ [([\phi \circ \chi]([c]_{E_0 \times \mathbb{N}})]_{E \cap F} \) is an \(E \)-class. As Proposition 1.1 ensures that the preimages \(E' \) and \(F' \) of \(E \) and \(F \) under \((\phi \circ \chi) \times (\phi \circ \chi) \) are meager, Proposition 1.4 yields a continuous injective homomorphism \(\psi : 2^\mathbb{N} \times \mathbb{N} \to 2^\mathbb{N} \times \mathbb{N} \) from \((E_0 \times I(\mathbb{N}), \sim(E_0 \times I(\mathbb{N})))\) to \((E_0 \times I(\mathbb{N}), \sim(E' \cup F'))\) with the property that \(\forall c \in 2^\mathbb{N} \ [\psi([c]_{E_0 \times \mathbb{N}})]_{E \cap F} \) is an \((E_0 \times I(\mathbb{N}))\)-class. Define \(\pi = \phi \circ \chi \circ \psi \).

2. Uniformizations

As a corollary of Theorem 1.13, we obtain the following:
Theorem 2.1. Suppose that X and Y are Polish spaces, E is a Borel equivalence relation on X, F is a countable Borel equivalence relation on Y, and $R \subseteq X \times Y$ is an $(E \times \Delta(Y))$-invariant Borel set whose vertical sections are contained in countable unions of F-classes. Then exactly one of the following holds:

1. There is a partition $(B_n)_{n \in \mathbb{N}}$ of $\text{proj}_X(R)$ into E-invariant Borel sets such that for all $n \in \mathbb{N}$, there is an $((E \times F) \restriction R)$-invariant Borel quasi-uniformization of $R \cap (B_n \times Y)$.

2. There are continuous embeddings $\pi_X : 2^\mathbb{N} \times \mathbb{N} \hookrightarrow X$ of $\mathbb{E}_0 \times I(\mathbb{N})$ into E and $\pi_Y : 2^\mathbb{N} \times \mathbb{N} \hookrightarrow Y$ of $\Delta(2^\mathbb{N}) \times \Delta(\mathbb{N})$ into F such that $R \cap (\pi_X(2^\mathbb{N}) \times Y) = [\{\pi_X \times \pi_Y \}([\mathbb{E}_0 \times I(\mathbb{N})])_{(\Delta(X) \times F)\restriction_R}$.

Proof. To see that conditions (1) and (2) are mutually exclusive, note that if both hold, then there is an $(\mathbb{E}_0 \times I(\mathbb{N}))$-complete Borel set whose intersection with each $(\mathbb{E}_0 \times I(\mathbb{N}))$-class is finite, contradicting Proposition \ref{prop:finite-class}.

Suppose now that condition (1) fails. Then Theorem \ref{thm:projection} yields a continuous embedding $\pi : 2^\mathbb{N} \hookrightarrow R$ of $(\mathbb{E}_0 \times I(\mathbb{N}), \Delta(2^\mathbb{N}) \times \Delta(\mathbb{N}))$ into $(E \times I(Y), (I(X) \times F) \cup (\Delta(X) \times I(Y)))$ for which $[\pi(2^\mathbb{N} \times \mathbb{N})]_{(E \times F)\restriction_R}$ is $((E \times I(Y)) \restriction R)$-invariant. Set $\pi_X = \text{proj}_X \circ \pi$ and $\pi_Y = \text{proj}_Y \circ \pi$. \(\Box\)

As a corollary, we obtain the following generalization of Theorem 2.

Theorem 2.2. Suppose that X and Y are Polish spaces, E is a Borel equivalence relation on X, F is a smooth countable Borel equivalence relation on Y, and $R \subseteq X \times Y$ is an $(E \times \Delta(Y))$-invariant Borel set whose vertical sections are contained in countable unions of F-classes. Then exactly one of the following holds:

1. There is an $((E \times F) \restriction R)$-invariant Borel uniformization of R over F.

2. There are continuous embeddings $\pi_X : 2^\mathbb{N} \times \mathbb{N} \hookrightarrow X$ of $\mathbb{E}_0 \times I(\mathbb{N})$ into E and $\pi_Y : 2^\mathbb{N} \times \mathbb{N} \hookrightarrow Y$ of $\Delta(2^\mathbb{N}) \times \Delta(\mathbb{N})$ into F such that $R \cap (\pi_X(2^\mathbb{N}) \times Y) = [\{\pi_X \times \pi_Y \}([\mathbb{E}_0 \times I(\mathbb{N})])_{(\Delta(X) \times F)\restriction_R}$.

Proof. By Theorem \ref{thm:main} it is sufficient to show that if every vertical section of R is contained in a union of finitely-many F-classes, then there is a Borel uniformization of R. But this is a straightforward consequence of the original Lusin-Novikov uniformization theorem. \(\Box\)

References

14

B.D. MILLER

Benjamin D. Miller, Universität Wien, Augasse 2–6, 1090 Wien, Austria

E-mail address: benjamin.miller@univie.ac.at

URL: http://www.logic.univie.ac.at/benjamin.miller