COORDINATEWISE DECOMPOSITION OF
GROUP-VALUED BOREL FUNCTIONS

BENJAMIN D. MILLER

Abstract. Answering a question of Klopotowski-Nadkarni-Sarbadhikari-Srivastava [6], we characterize the Borel sets \(S \subseteq X \times Y \) on which every Borel function \(f : S \to C \) is of the form \(uv|S \), where \(u : X \to C \) and \(v : Y \to C \) are Borel.

Suppose that \(S \subseteq X \times Y \) and \(\Gamma \) is a group. A coordinatewise decomposition of a function \(f : S \to \Gamma \) is a pair \((u, v)\), where \(u : X \to \Gamma \), \(v : Y \to \Gamma \), and \(\forall (x, y) \in S \ (f(x, y) = u(x)v(y)) \).

While our main goal here is to study coordinatewise decompositions in the descriptive set-theoretic context, we will first study the existence of coordinatewise decompositions without imposing any definability restrictions.

For the sake of notational convenience, we will assume that \(X \cap Y = \emptyset \). The graph associated with \(S \) is the graph on the set \(Z_S = X \cup Y \) given by \(G_S = S \cup S^{-1} \).

The following fact was proven essentially by Cowsik-Klopotowski-Nadkarni [1]:

Proposition 1. Suppose that \(X, Y \) are disjoint, \(S \subseteq X \times Y \), and \(\Gamma \) is a non-trivial group. Then the following are equivalent:

1. Every function \(f : S \to \Gamma \) admits a coordinatewise decomposition;
2. \(G_S \) is acyclic.

Proof. To see \(\neg(2) \Rightarrow \neg(1) \) note that, by reversing the roles of \(X \) and \(Y \) if necessary, we can assume that there is a proper cycle of the form \(x_0, y_0, x_1, y_1, \ldots, x_{n+1} = x_0 \) through \(G_S \). Fix \(\gamma_0 \in \Gamma \setminus \{1_\Gamma\} \), define \(f : S \to \Gamma \) by

\[
 f(x, y) = \begin{cases}
 \gamma_0 & \text{if } (x, y) = (x_0, y_0), \\
 1_\Gamma & \text{otherwise},
 \end{cases}
\]

and suppose that \((u, v)\) is a coordinatewise decomposition of \(f \). Then

\[
 \gamma_0 = f(x_0, y_0)f(x_1, y_0)^{-1} \cdots f(x_n, y_n)f(x_{n+1}, y_n)^{-1}
 = (u(x_0)v(y_0))(u(x_1)v(y_0))^{-1} \cdots (u(x_n)v(y_n))(u(x_{n+1})v(y_n))^{-1}
 = u(x_0)u(x_1)^{-1} \cdots u(x_n)u(x_{n+1})^{-1}
 = u(x_0)u(x_{n+1})^{-1}
 = 1_\Gamma,
\]

which contradicts our choice of \(\gamma_0 \).
To see \((2) \Rightarrow (1)\), let \(E_S\) be the equivalence relation whose classes are the connected components of \(G_S\), fix a transversal \(B \subseteq Z_S\) of \(E_S\) (i.e., a set which intersects every \(E_S\)-class in exactly one point), and define \(B_n \subseteq Z\) by
\[
B_n = \{ z \in Z : d_S(z, B) = n \},
\]
where \(d_S\) denotes the graph metric associated with \(G_S\). For \(z \in B_{n+1}\), let \(g(z)\) denote the unique \(G\)-neighbor of \(z\) in \(B_n\), and define recursively \(u : X \to \Gamma, v : Y \to \Gamma\) by
\[
u(y) = \begin{cases} 1_\Gamma & \text{if } y \in B, \\ u(g(y))^{-1}f(g(y), y) & \text{otherwise.} \end{cases}
\]

As a corollary of the proof of Proposition 1, we obtain a sufficient condition for the existence of Borel coordinatewise decompositions:

Corollary 2. Suppose that \(X\) and \(Y\) are Polish spaces, \(S \subseteq X \times Y\) is Borel, \(G_S\) is acyclic, and \(E_S\) admits a Borel transversal. Then every standard Borel group-valued Borel function on \(S\) admits a Borel coordinatewise decomposition.

Proof. It is sufficient to check that if \(f : S \to \Gamma\) is a standard Borel group-valued Borel function, then the functions \(u\) and \(v\) constructed in the proof of Proposition 1 are Borel. Letting \(B_n \subseteq Z_S\) and \(g : Z_S \to Z_S\) be as constructed above, it follows from the fact that \(G_S\) is acyclic that
\[
z \in B_{n+1} \iff z \notin \bigcup_{i \leq n} B_i \text{ and } \exists w \in B_n \ ((z, w) \in \mathcal{G})
\]
\[
\iff z \notin \bigcup_{i \leq n} B_i \text{ and } \exists ! w \in B_n \ ((z, w) \in \mathcal{G}),
\]
and it follows from results of Souslin and Lusin (see, for example, Theorems 14.11 and 18.11 of Kechris [5]) that each of these sets is Borel. As
\[
\operatorname{graph}(g) = \bigcup_{n \in \mathbb{N}} G_S \cap (B_{n+1} \times B_n),
\]
it follows that \(g\) is Borel as well (see, for example, Theorem 14.12 of Kechris [5]), and this easily implies that \(u\) and \(v\) are Borel. \(\square\)

Our main theorem is that the sufficient condition given in Corollary 2 is also necessary to guarantee the existence of Borel coordinatewise decompositions:
Theorem 3. Suppose that X, Y are disjoint Polish spaces, $S \subseteq X \times Y$ is Borel, and Γ is a non-trivial standard Borel group. Then the following are equivalent:

1. Every Borel function $f : S \to \Gamma$ admits a Borel coordinatewise decomposition;

2. \mathcal{G}_S is acyclic and E_S admits a Borel transversal.

Proof. As $(2) \Rightarrow (1)$ follows from Corollary 2, we need only show that $(1) \Rightarrow (2)$.

As the map f described in the proof of $\neg (2) \Rightarrow \neg (1)$ of Proposition 1 is clearly Borel, it follows that \mathcal{G}_S is acyclic, thus E_S is Borel (by Theorems 14.11 and 18.11 of Kechris [5]).

Fix a non-trivial countable subgroup $\Delta \leq \Gamma$, endow Δ with the discrete topology, and endow $\Delta^\mathbb{N}$ with the corresponding product topology. Define E_{Δ}^0 on $\Delta^\mathbb{N}$ by

$$\alpha n \in \mathbb{N} \forall m > n (\alpha(m) = \beta(m)),$$

and define $F_{\Delta}^0 \subseteq E_{\Delta}^0$ on $\Delta^\mathbb{N}$ by

$$\alpha n \in \mathbb{N} (\alpha(0) \cdots \alpha(n) = \beta(0) \cdots \beta(n) \text{ and } \forall m > n (\alpha(m) = \beta(m))).$$

Let Δ act freely on $\Delta^\mathbb{N}$ by left multiplication on the 0th-coordinate, i.e.,

$$\delta \cdot \alpha = (\delta \alpha(0), \alpha(1), \alpha(2), \ldots).$$

Lemma 4. The action of Δ on $\Delta^\mathbb{N}$ induces a free action of Δ on $\Delta^\mathbb{N}/F_{\Delta}^0$.

Proof. It is enough to show that

$$\forall \delta \in \Delta \forall \alpha, \beta \in \Delta^\mathbb{N} (\alpha F_{\delta}^0 \beta \Rightarrow \delta \cdot \alpha F_{\delta}^0 \delta \cdot \beta).$$

Towards this end, suppose that $\delta \in \Delta$ and $(\alpha, \beta) \in F_{\delta}^0$, fix $n \in \mathbb{N}$ such that

$$\alpha(0) \cdots \alpha(n) = \beta(0) \cdots \beta(n) \text{ and } \forall m > n (\alpha(m) = \beta(m)),$$

and note that

$$\delta \alpha(0) \cdots \alpha(n) = \delta \beta(0) \cdots \beta(n) \text{ and } \forall m > n (\alpha(m) = \beta(m)),$$

thus $\delta \cdot \alpha F_{\delta}^0 \delta \cdot \beta$.

Suppose now that $F \subseteq E$ are Borel equivalence relations on a Polish space Z. We say that a set $B \subseteq Z$ is F-invariant if $\forall z_1 \in B \forall z_2 \in Z (z_1 F z_2 \Rightarrow z_2 \in B)$, and $B \subseteq Z$ is an E-complete section if $\forall z_1 \in Z \exists z_2 \in B (z_1 E z_2)$. We say that E is relatively ergodic over F if there is no Borel way of choosing a non-empty proper subset of the F-classes within each E-class, i.e., if there is no F-invariant Borel set $B \subseteq Z$ such that both B and $Z \setminus B$ are E-complete sections.

Lemma 5. E_{δ}^0 is relatively ergodic over F_{δ}^0.

Proof. Suppose, towards a contradiction, that $B \subseteq \Delta^\mathbb{N}$ is an F_{δ}^0-invariant Borel set such that both B and $\Delta^\mathbb{N} \setminus B$ are E_{δ}^0-complete sections. As B is an E_{δ}^0-complete
section, it follows that B is non-meager, thus there exists $s \in \Delta^{\leq N}$ such that B is comeager in \mathcal{N}_s. Define $C \subseteq \Delta^N$ by

$$C = \Delta^N \setminus [\mathcal{N}_s \setminus B]_{E_0^\alpha},$$

and observe that C is an E_0^Δ-invariant comeager Borel set and $\mathcal{N}_s \cap C \subseteq B \cap C$. It only remains to show that $C \subseteq B$, which implies that $\Delta^N \setminus B$ is meager and therefore contradicts the fact that $\Delta^N \setminus B$ is an E_0^Δ-complete section. Towards this end, put $n = |s|$, and given any $\alpha \in C$, define $\delta \in \Delta$ by

$$\delta = (s(0) \cdots s(n-1))^{-1}(\alpha(0) \cdots \alpha(n)).$$

As $\alpha E_0^\Delta s(0) \cdots s n + 1)\delta \alpha(n + 1)\alpha(n + 2) \ldots$, it follows that $\alpha \in B$. \hfill \Box

Suppose now that E_1 and E_2 are Borel equivalence relations on Polish spaces Z_1 and Z_2, respectively. A reduction of E_1 into E_2 is a function $\pi : Z_1 \to Z_2$ such that $\forall z, z' \in Z_1 (z E_1 z' \iff \pi(z) E_2 \pi(z'))$. An embedding is an injective reduction. Let E_0 denote the equivalence relation on 2^N which is given by

$$\alpha E_0 \beta \iff \exists n \in \mathbb{N} \forall m > n (\alpha(m) = \beta(m)).$$

While our next lemma follows from the much more general results of Dougherty-Jackson-Kechris [2], it is easy enough to prove directly:

Lemma 6. There is a Borel embedding $\pi_1 : \Delta^N \to 2^N$ of E_0^Δ into E_0.

Proof. Fix an enumeration (k_n, δ_n) of $\mathbb{N} \times \Delta$, and define $\pi_1 : \Delta^N \to 2^N$ by

$$[\pi_1(\alpha)](n) = \begin{cases} 1 & \text{if } \alpha(k_n) = \delta_n, \\ 0 & \text{otherwise}. \end{cases}$$

It is straightforward to check that π_1 is the desired embedding. \hfill \Box

Now suppose, towards a contradiction, that E_S has no Borel transversal.

Lemma 7. There is a Borel embedding $\pi_2 : 2^N \to Z_S$ of E_0 into $E_S|X$.

Proof. An equivalence relation E on a Polish space Z is said to be smooth if there is a Borel reduction of E into the trivial equivalence relation $\Delta(\mathbb{R}) = \{(x, x) : x \in \mathbb{R}\}$, or equivalently, if E admits a Borel separating family, i.e., a family B_0, B_1, \ldots of Borel subsets of Z such that

$$\forall z_1, z_2 \in Z (z_1 E z_2 \iff \forall n \in \mathbb{N} (z_1 \in B_n \iff z_2 \in B_n)).$$

Suppose, towards a contradiction, that there is no Borel embedding of E_0 into $E_S|X$. As E_S is Borel, so too is $E_S|X$. It follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that $E_S|X$ is smooth. Fix a Borel separating family B_0, B_1, \ldots for $E_S|X$, and observe that the sets

$$A_n = B_n \cup \{y \in Y : \exists x \in B_n ((x, y) \in S)\}$$

form a Σ_1^1 separating family for $E_S|\{X \cup \text{proj}_Y[S]\}$, where $\text{proj}_Y : X \times Y \to Y$ denotes the projection function. It then follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that E_S is smooth. As G_S is acyclic, it follows from Hjorth [4] (see also Miller [7]) that E_S admits a Borel transversal, which contradicts our assumption that it does not. \hfill \Box
For $x_1 E_S x_2$, we say that z is G_S-between x_1 and x_2 if z lies along the unique injective G_S-path from x_1 to x_2. Define $B \subseteq Z_S$ by

$$B = \{ z \in Z_S : \exists x_1, x_2 \in \text{rng}(\pi_2 \circ \pi_1) (z \text{ is } G_S\text{-between } x_1 \text{ and } x_2) \}.$$

As G_S is acyclic and $\text{rng}(\pi_2 \circ \pi_1)$ intersects every E_S-class in a countable set, it follows that B is Borel. As $E_S \cap (B \times \text{rng}(\pi_2 \circ \pi_1))$ has countable sections, the Lusin-Novikov uniformization theorem (see, for example, §18 of Kechris [5]) ensures that it has a Borel uniformization $\pi_3 : B \to \text{rng}(\pi_2 \circ \pi_1)$. We can clearly assume that $\pi_3|\text{rng}(\pi_2 \circ \pi_1) = \text{id}$. Define $\pi : B \to \Delta^N$ by

$$\pi = (\pi_2 \circ \pi_1)^{-1} \circ \pi_3,$$

and finally, define $f : S \to \Delta$ by

$$f(x, y) = \begin{cases} 1 \text{ if } x \notin B \text{ or } y \notin B, \text{ and} \\ \delta \text{ if } x, y \in B \text{ and } \delta \cdot \pi(y)F_0^\Delta \pi(x). \end{cases}$$

Now suppose, towards a contradiction, that there is a Borel coordinatewise decomposition (u, v) of f.

Lemma 8. Suppose that $x, x' \in B \cap X$ and xE_Sx'. Then:

1. $u(x)u(x')^{-1} \in \Delta$.
2. $u(x)u(x')^{-1} \cdot \pi(x')F_0^\Delta \pi(x)$.

Proof. Let $x_0, y_0, \ldots, x_n, y_n, x_{n+1}$ be the unique G_S-path from x to x'. To see (1), observe that for all $i \leq n$,

$$u(x_i)u(x_{i+1})^{-1} = (u(x_i)v(y_i))(u(x_{i+1})v(y_i))^{-1} = f(x_i, y_i)f(x_{i+1}, y_i)^{-1},$$

thus $u(x_i)u(x_{i+1})^{-1} \in \Delta$. Noting that

$$u(x_0)u(x_{n+1})^{-1} = u(x_0)u(x_1)^{-1}u(x_1)u(x_2)^{-1} \cdots u(x_n)u(x_{n+1})^{-1},$$

it follows that $u(x)u(x')^{-1} \in \Delta$.

To see (2), recall that Δ acts freely on Δ^N/F_0^Δ, thus for all $i \leq n$,

$$u(x_i)u(x_{i+1})^{-1} \cdot [\pi(x_{i+1})]_{F_0^\Delta} = f(x_i, y_i)f(x_{i+1}, y_i)^{-1} \cdot [\pi(x_{i+1})]_{F_0^\Delta} = f(x_i, y_i) \cdot [\pi(y_i)]_{F_0^\Delta} = [\pi(x_i)]_{F_0^\Delta}.$$

It then follows that

$$u(x_0)u(x_{n+1})^{-1} \cdot [\pi(x_{n+1})]_{F_0^\Delta} = u(x_0)u(x_1)^{-1} \cdots u(x_n)u(x_{n+1})^{-1} \cdot [\pi(x_{n+1})]_{F_0^\Delta} = u(x_0)u(x_1)^{-1} \cdots u(x_{n-1})u(x_n)^{-1} \cdot [\pi(x_n)]_{F_0^\Delta} \cdots = [\pi(x_0)]_{F_0^\Delta},$$

which completes the proof of the lemma. \qed
Define now \(w : \Delta^N \to \Gamma \) by \(w = u \circ \pi_2 \circ \pi_1 \). Fix a countable Borel separating family \(\Gamma_0, \Gamma_1, \ldots \) for \(\Gamma \), and define \(n : \Delta^N \to \Gamma \) by
\[
\begin{align*}
n(\alpha) &= \min \{ n \in \mathbb{N} : \exists \delta_1, \delta_2 \in \Delta \ (\delta_1 w(\alpha) \in \Gamma_n \text{ and } \delta_2 w(\alpha) \notin \Gamma_n) \}.
\end{align*}
\]
Lemma 8 ensures that if \(\alpha E_0^\Delta \beta \), then \(w(\alpha)w(\beta)^{-1} \in \Delta \), thus
\[
\begin{align*}
\Delta w(\alpha) &= \Delta w(\alpha)w(\beta)^{-1}w(\beta) \\
&= \Delta w(\beta),
\end{align*}
\]
and it follows that \(n(\alpha) = n(\beta) \). As \(\pi_3 \mid \text{rng}(\pi_2 \circ \pi_1) = \text{id} \), Lemma 8 ensures also that \(w(\alpha)w(\beta)^{-1} \circ F_0^\Delta \alpha \). It follows that if \(\alpha = \delta \cdot \beta \), then \(w(\alpha)w(\beta)^{-1} = \delta \), thus \(w(\alpha) = \delta w(\beta) \). Defining \(A \subseteq \Delta^N \) by
\[
A = \{ \alpha \in \Delta^N : w(\alpha) \in \Gamma_n(x) \},
\]
it follows that both \(A \) and \(\Delta^N \setminus A \) are \(E_0^\Delta \)-complete sections. As \(A \) is clearly \(F_0^\Delta \)-invariant, it follows that \(E_0^\Delta \) is not relatively ergodic over \(F_0^\Delta \), which contradicts Lemma 5, and therefore completes the proof of the theorem. \(\square \)

Klopotowski-Nadkarni-Sarbadhikari-Srivastava [6] have studied coordinatewise decomposition using another equivalence relation \(L \) which, modulo straightforward identifications, is the equivalence relation whose classes are the connected components of the dual graph \(\tilde{G}_S \) on \(S \), which is given by
\[
\tilde{G}_S = \{ ((x_1, y_1), (x_2, y_2)) \in S \times S : (x_1, y_1) \neq (x_2, y_2) \text{ and } (x_1 = x_2 \text{ or } y_1 = y_2) \}.
\]
The equivalence classes of \(L \) are called the \textit{linked components} of \(S \), and the linked components of \(S \) are said to be \textit{uniquely linked} if \(G_S \) is acyclic.

Conjecture 9 (Klopotowski-Nadkarni-Sarbadhikari-Srivastava). Suppose that \(X, Y \) are disjoint Polish spaces and \(S \subseteq X \times Y \) is Borel. Then the following are equivalent:

1. Every Borel function \(f : S \to \mathbb{C} \) admits a Borel coordinatewise decomposition;
2. The linked components of \(S \) are uniquely linked and \(L \) is smooth.

In light of Theorem 3 and the above remarks, the following observation implies that Conjecture 9 is indeed correct:

Proposition 10. Suppose that \(X \) and \(Y \) are disjoint Polish spaces, \(S \subseteq X \times Y \) is Borel, and \(G_S \) is acyclic. Then the following are equivalent:

1. \(E_S \) admits a Borel transversal;
2. \(L \) is smooth.

Proof. To see (1) \(\Rightarrow \) (2), suppose that \(E_S \) admits a Borel transversal \(B \subseteq Z_S \). Let \(\pi_1 : Z_S \to Z_S \) be the function which sends \(z \) to the unique element of \(B \cap \lfloor z \rfloor_{E_S} \), and let \(\pi_2 = \text{proj}_X |S \). Then \(\pi_1 \) is a Borel reduction of \(E_S \) into \(\Delta(Z_S) \) and \(\pi_2 \) is a Borel reduction of \(L \) into \(E_S \), thus \(\pi_1 \circ \pi_2 \) is a Borel reduction of \(L \) into \(\Delta(Z_S) \), so \(L \) is smooth.
To see (2) ⇒ (1), suppose that L is smooth, and fix a Borel reduction $\pi_1 : S \to \mathbb{R}$ of L into $\Delta(\mathbb{R})$. Put $Z = \text{proj}_X[S] \cup \text{proj}_Y[S]$. By the Jankov-von Neumann uniformization theorem (see, for example, §18 of Kechris [5]), there is a $\sigma(\Sigma_1^1)$-measurable reduction $\pi_2 : Z \to S$ of $E_S|Z$ into L, thus $\pi_1 \circ \pi_2$ is a $\sigma(\Sigma_1^1)$-measurable reduction of $E_S|Z$ into $\Delta(\mathbb{R})$. It then follows from Theorem 1.1 of Harrington-Kechris-Louveau [3] that E_S is smooth. As G_S is acyclic, it then follows from Hjorth [4] (see also Miller [7]) that E_S admits a Borel transversal.

\[\square\]

REFERENCES