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Introduction

Group theory is a broad subject which arises in many areas of mathematics and physics, and
has several different roots. One foundational root of group theory was the quest of solutions of
polynomial equations of degree higher than 4. Lagrange introduced permutation groups for the
theory of equations, and Galois the groups named after him for the solvability of the equation
with radicals. A second root was the study of symmetry groups in geometry. The systematic
use of groups in geometry was initiated by Klein’s 1872 Erlangen program. Finally, a third
root of group theory was number theory. Certain abelian group structures had been implicitly
used in number-theoretical work by Gauss, and more explicitly by Kronecker.
Modern group theory nowadays is not just a part of abstract algebra. It has several branches,
such as combinatorial group theory, geometric group theory, the theory of finite groups, the
theory of discrete groups, transformation groups, Lie groups and algebraic groups, and many
more.
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CHAPTER 1

Review of basic notions

1.1. Group axioms

An axiomatic description of groups is given as follows.

Definition 1.1.1. A group G is a non-empty set together with a binary operation (a, b) 7→
ab from G×G→ G satisfying the following conditions:

(1) Associativity. For all g, h, k ∈ G we have

(gh)k = g(hk).

(2) Existence of a neutral element. There exists an element e ∈ G such that

eg = g = ge

for all g ∈ G.
(3) Existence of inverses. For every g ∈ G there exists an element g−1 ∈ G such that

gg−1 = e = g−1g.

Note that the neutral element is uniquely determined. Indeed, if e′ is a second such element,
then e′ = ee′ = e. Moreover, by (3), e is the unique element of G such that ee = e. Also the
inverse element g−1 of g is uniquely determined.

Remark 1.1.2. One can replace the axioms (2) and (3) by weaker ones, namely by (2′)
there exists an e such that ea = a for all a ∈ G, and (3′) for each a ∈ G there exists an a′ ∈ G
such that a′a = e.

Lemma 1.1.3. Let G be a group and a, b ∈ G. Then (a−1)−1 = a and (ab)−1 = b−1a−1.

Proof. Exercise. �

Lemma 1.1.4. In every group the cancellation laws are satisfied,i.e., gh = gk implies that
h = k, and hg = kg implies that h = k. If the group is finite, then the cancellation laws are
equivalent with axiom (3).

Proof. Suppose that gh = gk for g, h, k ∈ G. Using (3) we have

h = g−1gh = g−1gk = k.

In the same way, hg = kg implies that h = k. Suppose that G is finite. As we have just shown,
axiom (3) implies the cancellation laws in general. Assume now that the cancellation laws hold.
Then each left multiplication map Lg : x 7→ gx is injective. Since G is finite, it follows that
each Lg is also surjective. In particular, e is in the image. This shows axiom (3). �

Example 1.1.5. We start with 5 basic examples of groups.

1. The group (Z,+). Usually one writes g + h instead of gh, and −g for g−1. However the
group can also be written multiplicatively, and then is denoted by C∞.

3
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2. The group (Z/nZ,+). It is given by the residue classes {0, 1, . . . , n− 1} modulo n. Written
multiplicatively, it is denoted by Cn = {e, g, g2, . . . , gn−1}, where the letter C stands for “cyclic”.

3. The group GLn(F ) consists of the invertible n×n-matrices with coefficients in F . It is called
the general linear group of degree n.

4. The group Dn for n ≥ 3 of rigid motions of the plane preserving a regular n-gon, with the
operation being composition. It turns out that Dn has size 2n and is given by

Dn = {e, r, r2, . . . , rn−1, s, rs, r2s, . . . rn−1s},
where r is a rotation through 2π

n
, and s a reflection such that srs−1 = r−1. We have s2 = e, and

s, rs, r2s, . . . rn−1s are the reflections, and e, r, . . . , rn−1 the rotations of the n-gon with rn = e.

5. The “free” group F2 consisting of all possible words in two distinct letters a and b and its
inverses. Here we consider two words different unless their equality follows from the group
axioms.

Definition 1.1.6. A group G is called abelian, if it satisfies the commutativity law, e.g.,

gh = hg

for all g, h ∈ G.

Note that the groups of 1. and 2. are abelian, but the last three ones are non-abelian. For
the dihedral group Dn the elements r and s satisfy rs = sr−1. Since n ≥ 3 we have r 6= r−1,
because of rn = e. In F2 the words ab and ba are different.

Lemma 1.1.7. Let S be a non-empty subset of a group G. Suppose that the following two
properties hold:

(S1) For all a, b ∈ S we have ab ∈ S.
(S2) For all a ∈ S we have a−1 ∈ S.

Then the composition of G makes S into a group.

Proof. By (S1) the binary operation on G defines a binary operation on S, which inherits
associativity. By assumption S contains at least one element a, its inverse a−1, and the product
e = aa−1. By (S2) the inverses of elements in S lie in S. �

Definition 1.1.8. A non-empty subset S of a group G satisfying (S1) and (S2) is called a
subgroup of G.

Example 1.1.9. 1. The center of a group G, defined by

Z(G) = {g ∈ G | gx = xg ∀x ∈ G},
is a subgroup of G.

2. The intersection of arbitrary many subgroups of G is a subgroup of G.

3. The subset nZ of Z for an integer n is a subgroup of Z.

Lemma 1.1.10. For any subset X of a group G, there is a smallest subgroup of G contain-
ing X.

Proof. The intersection S of all subgroups of G containing X is again a subgroup of G
containing X, and it is evidently the smallest such group. S contains with X also all finite
products of elements of X and their inverses. But the set of such products satisfies (S1) and
(S2) and hence is a subgroup containing X. Clearly it equals S. �
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Definition 1.1.11. The smallest subgroup of G containing X is denoted by 〈X〉, and is
called the subgroup generated by X. We say that X generates G if G = 〈X〉, i.e., if every
element of G can be written as a finite product of elements of X and their inverses.

We have 〈∅〉 = {e}, which is the trivial group. The group generated by a rotation r through
2π
n

is given by Cn = 〈r〉 = {e, r, r2, . . . , rn−1}.

Definition 1.1.12. A group G is said to be cyclic if it is generated by a single element.

Note that cyclic groups are abelian, since elements rk and r` commute. The groups Cn and
C∞ are cyclic, whereas GLn(F ) for n > 1 is not cyclic, because it is not abelian.

1.2. Group homomorphisms

Having introduced our main “objects”, we need “morphisms” to relate the objects to each
other. As usual, morphisms should preserve the structure, and two objects should be considered
the same if they have the same structure:

Definition 1.2.1. A map ϕ : G→ H is called a group homomorphism if it satisfies

ϕ(gh) = ϕ(g) · ϕ(h)

for all g, h ∈ G. A group homomorphism that is bijective is called a group isomorphism. Its
inverse is also a group isomorphism. In this case, the groups G and H are called isomorphic.
We denote this by G ∼= H.

Note that ϕ(eG) = eH for such a group homomorphism and the neutral elements of the two
groups, and ϕ(g−1) = ϕ(g)−1.

Example 1.2.2. Here are three examples of group homomorphisms.

1. Let H be a subgroup of G. Then the inclusion map H ↪→ G is a group homomorphism.

2. The map ϕ : Z→ Z, x 7→ nx, for a fixed integer n is a group homomorphism.

3. The map exp: (R,+)→ (R>0, ·) is a group isomorphism, its inverse given by the logarithm.

Recall that the kernel of a group homomorphism ϕ : G→ H is given by

ker(ϕ) = {g ∈ G | ϕ(g) = e},

and the image of ϕ is given by

im(ϕ) = {ϕ(g) | g ∈ G}.

Both are subgroups of G. It is easy to see that a group homomorphism is injective if and only
if its kernel is trivial.

Definition 1.2.3. Let X be a set. Then the set of all bijections X → X forms a group
with respect to composition. It is denoted by Sym(X).

For X = {1, 2, . . . , n} the group Sym(X) is the symmetric group Sn. It is a non-abelian
group for n > 2.

Theorem 1.2.4 (Cayley). For any group G there is a canonical embedding L : G ↪→ Sym(G).
In particular, any finite group of order n can be realized as a subgroup of Sn.
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Proof. Consider the map L : G→ Sym(G) given by g 7→ Lg. We have

(La ◦ Lb)(x) = Lab(x)

for all a, b, x ∈ G, and La ∈ Sym(G) for all a ∈ G, because every La is bijective. Indeed, we
have Le = id and

La ◦ La−1 = id = La−1 ◦ La.
It follows that L is a group homomorphism. It is injective because the cancellation laws hold.
Hence it is an embedding. �

Remark 1.2.5. The symmetric group Sn has order n!. Every finite group G of order n can
be embedded in Sn, but often one can embed G in a permutation group of much smaller order.
We may define the degree of a group G of order n, denoted d(G), to be the least integer d
such that G can be embedded in Sd. There is a large literature on the study of d(G). Johnson
classified all G of order n such that d(G) = n. Except for a family of 2-groups, these groups
are precisely the cyclic p-groups. Here a group G is called a p-group, if its order is a power of
p for a prime p.

An automorphism of a group G is a group isomorphism G→ G. For example, the conjuga-
tion map

ig : G→ G, x 7→ gxg−1

is an automorphism of G. We have

(gh)x(gh)−1 = g(hxh−1)g−1,

for all g, h ∈ G, which says that igh(x) = (ig ◦ ih)(x), so that ig is a bijective group homomor-
phism, and hence an automorphism.

Definition 1.2.6. Denote by Aut(G) the set of automorphisms of G. It becomes a group
under composition, and it is called the automorphism group of G. The subgroup Inn(G) = {ig |
g ∈ G} is called the group of inner automorphisms.

Note that Inn(G) is trivial if and only if G is abelian.

Example 1.2.7. We have Aut(S3) = Inn(S3) ∼= S3 and Aut(Fnp ) = GLn(Fp), where the
automorphisms of G = Fnp as a commutative group are just the automorphisms of G as a vector

space over the finite field Fp. For n = p = 2 we have Aut(F2
2) = GL2(F2) ∼= S3.

Remark 1.2.8. Different groups may have an isomorphic automorphism group, e.g.,

Aut(S3) ∼= S3
∼= Aut(C2 × C2),

where C2 × C2 is the direct product, with componentwise product.

We want to mention a few more groups consisting of bijective transformations.

Definition 1.2.9. Let X be a metric space. The set of all isometries from X → X forms
a group under composition, and is denoted by Isom(X). It is called the isometry group of X.
For M a subset of X, a symmetry of M is an isometry of X fixing M . Symmetries of M form
a subgroup Sym(M) of Isom(X).

Definition 1.2.10. Let L | K be a Galois extension of fields. Then the set

Gal(L,K) = {σ ∈ Aut(L) | σ|K = idK}
of field automorphisms of L fixing K is a group with respect to composition, and is called the
Galois group of the extension L | K.
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Example 1.2.11. Let L = Q(
√

2,
√

3) and K = Q. Then the extension L | K is Galois
with Galois group

Gal(L | K) ∼= C2 × C2.

Definition 1.2.12. Let π : X → Y be a covering map of topological spaces. Then the set
of homeomorphisms f : X → X satisfying π ◦ f = π form a group with respect to composition,
the Deck transformation group.

Example 1.2.13. 1. The deck transformations for the universal covering C→ C∗ given by
the exponential map is the set of translations of the form z 7→ z + 2πik for k ∈ Z. Thus, the
group of deck transformations is isomorphic to Z.

2. The deck transformations for the covering map C∗ → C∗ given by the power map z 7→ zn

are the maps of the form z 7→ ωz, where ω is any n-th root of unity. As an abstract group, this
deck transformation group is isomorphic to Z/nZ.

1.3. Cosets, normal subgroups and the Isomorphism Theorems

For a subset S of a group G we let

aS = {as | s ∈ S}, Sa = {sa | s ∈ S}.

Definition 1.3.1. For a subgroup H of a group G the sets of the form aH are called left
cosets of H, and the sets of the form Ha are called right cosets of H.

Because e ∈ H we have aH = H if and only if a ∈ H.

Proposition 1.3.2. Let H be a subgroup of G.

(a) An element a ∈ G lies in a left coset C of H if and only if C = aH.
(b) Two left cosets are either disjoint or equal.
(c) We have aH = bH if and only if a−1b ∈ H.
(d) Any two left cosets have the same number of elements, possibly infinite.

Proof. (a): If C = aH then of course a ∈ aH. Conversely, if a lies in the left coset bH,
then a = bh for some h ∈ H, so that

aH = bhH = bH.

(b): Suppose that the cosets C and C ′ are not disjoint. Then there is an a in both C and C ′,
so that C = aH = C ′ by (a).

(c): If a−1b ∈ H, then H = a−1bH, and so aH = aa−1bH = bH. Conversely, if aH = bH, then
H = a−1bH, and so a−1b ∈ H.

(d): The map Lba−1 : aH → bH given by ah 7→ bh is a bijection. �

Definition 1.3.3. Let H be a subgroup of G. The index (G : H) of H in G is the cardinality
of the set {aH | a ∈ G}, i.e., the number of left cosets of H in G.

For the trivial subgroup H = 1 we have (G : 1) = |G|. We have

G =
⋃
a∈G

aH,

and because two cosets are either equal or disjoint, they form a partition of G.
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Theorem 1.3.4 (Lagrange). Let G be a finite group. Then

(G : 1) = (G : H)(H : 1).

In particular, the order of every subgroup H of G divides the order of G.

Proof. The left cosets of H in G form a partition of G, and there are (G : H) of them.
Each left coset has (H : 1) elements. �

Recall that the order of g ∈ G is given by ord(g) = |〈g〉|.
Corollary 1.3.5. For each g ∈ G, the order of g divides |G|.
Proof. Apply Lagrange for the subgroup H = 〈g〉, and use that (H : 1) = ord(g). �

Corollary 1.3.6. Every group of prime order p is isomorphic to the cyclic group Cp.

Proof. Let G be a group of order p. Then every element has order 1 or p, since these two
numbers are the only positive divisors of p. Since G is non-trivial there is an element g ∈ G
of order p. Let H = 〈g〉 ⊆ G be the cyclic subgroup of G generated by g. Then |H| = p and
H = G = {e, g, g2, . . . gp−1}. �

Example 1.3.7. Up to isomorphism there is only one group of order 109 + 7.

Indeed, 109 + 7 is prime.

Proposition 1.3.8. For each n ≤ ∞ there is exactly one cyclic group of order n, up to
isomorphism.

Proof. Exercise. �

A cyclic group of order n has an element of order n. Note that C2 × C2 is not cyclic, since
it does not have an element of order 4.

Proposition 1.3.9. Every subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group, with generator g. For a subgroup H ⊆ G we will show
H = 〈gn〉 for some n ∈ N, so H is cyclic. The trivial subgroup is obviously of this form. So we
may suppose H is non-trivial. Let n be the smallest positive integer such that gn ∈ H. Such
an n must exist since H contains some power of g. We claim that every h ∈ H is a power of
gn. We know that h = gm for some m ∈ Z. By the division theorem in Z we have m = qn+ r
for some integers q and r such that 0 ≤ r < n. Therefore

h = gm = (gn)qgr,

and gr = (gn)−qh. Since gn ∈ H this shows that gr ∈ H. However, n was minimal, so that
0 ≤ r < n now implies r = 0. Thus n | m and h = gm ∈ 〈gn〉. This proves H = 〈gn〉. �

Proposition 1.3.10. Let H ⊇ K be two subgroups of G. Then we have

(G : K) = (G : H)(H : K).

Proof. Exercise. �

Definition 1.3.11. A subgroup N of G is called normal, if gNg−1 = N for all g ∈ G. We
denote this by N / G.

Example 1.3.12. Let G = GL2(Z) = {A ∈ M2(Z) | det(A) = ±1} and N = {( 1 n
0 1 ) | n ∈

Z}. Then N is a subgroup which is not normal. On the other hand, SL2(Z) = {A ∈ M2(Z) |
det(A) = 1} is a normal subgroup of G.
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For g = ( 0 1
1 0 ) ∈ G we have

g

(
1 n
0 1

)
g−1 =

(
1 0
n 1

)
6∈ N.

Clearly a subgroup N of G is normal, if and only if gN = Ng for all g ∈ G.

Lemma 1.3.13. Every subgroup H of G with (G : H) = 2 is normal.

Proof. If (G : H) = 2, then G = H ∪ gH as disjoint union. Hence gH is the complement
of H in G. The same argument shows that Hg is the complement of H in G. Thus we have
gH = G \H = Hg for all g ∈ G. �

Example 1.3.14. The subgroup Cn = {e, r, r2, . . . , rn−1} in Dn has index 2, and hence is
normal.

Example 1.3.15. Every subgroup of an abelian group is normal. The converse is not
true. For example, consider the quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k} with group
operation defined by i2 = j2 = k2 = −1 and ij = k, ji = −k, jk = i, kj = −i and ki = j,
ik = −j. Of course, Q8 is not abelian, as ij = −ji. It can be checked (see Exercises) that
every subgroup of the quaternion group Q8 is normal.

Recall that if N is a normal subgroup of G, there is a unique group structure on the set
G/N of cosets of N in G such that π : G→ G/N , a 7→ aN is a homomorphism with kernel N .
Indeed, for a subgroup H of G, requiring that there should be a well-defined group operation
on the set of cosets G/H so that the map a 7→ aH is a group homomorphism is equivalent to
the requirement that H be normal in G.

We finally recall

Theorem 1.3.16 (The Isomorphism Theorems).

(1) Let ϕ : G → H be a group homomorphism. Then K = kerϕ is a normal subgroup of
G, and the map g 7→ gK induces an isomorphism of groups G/K ∼= imϕ.

(2) Let G be a group. Let H be a subgroup of G, and let N be a normal subgroup of G.
Then the following hold:
• The product HN is a subgroup of G containing N as a normal subgroup.
• The intersection H ∩N is a normal subgroup of H.
• The quotient groups HN/N and H/(H ∩N) are isomorphic.

Example 1.3.17.

(1) The Special Linear group SLn(K) is the kernel of the group homomorphism

det : GLn(K)→ K×,

and hence a normal subgroup of GLn(K) with quotient group GLn(K)/SLn(K) ∼= K×.
(2) The alternating group An is the kernel of the signature group homomorphism

sign : Sn → {1,−1}.

Hence (Sn : An) = 2 and An is a normal subgroup of Sn with quotient group Sn/An ∼=
{1,−1} ∼= C2.
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1.4. Permutation groups

We already have defined the symmetric group Sn as Sym(X), where X has n elements. A
permutation π ∈ Sn is given by

π =

(
1 2 3 · · · n

π(1) π(2) π(3) · · · π(n)

)
.

Note that we are considering permutations as bijections, and we have the rule

(π2 ◦ π1)(i) = π2(π1(i)).

As the group operation in Sn is composition, when computing the product π2π1 of two elements
of the symmetric group Sn, the “right hand element is done first”.

Given a permutation π ∈ Sn, the pairs (i, j) with i < j and π(i) > π(j) are called the
inversions of π, and π is said even or odd according as the number of inversions is even or odd.
Algebraically, we can use the following

Definition 1.4.1. The sign of π ∈ Sn is defined by

sign(π) =
∏
i<j

π(i)− π(j)

i− j
.

Then even permutations have sign +1, and odd permutations have sign −1.
We have sign(σ◦τ) = sign(σ)sign(τ) for all σ, τ ∈ Sn, so that sign: Sn → {±1}, π 7→ sign(π)

is a group homomorphism. For n ≥ 2 it is surjective so that its kernel is a normal subgroup of
order |Sn|/2 = n!/2, i.e., the alternating group An.

Recall that we can write every permutation π ∈ Sn as a disjoint product of cycles. For example,

π =

(
1 2 3 4 5 6 7 8
5 7 4 2 1 3 6 8

)
= (15)(27634)(8).

The order of π is the lcm of the cycle orders, which are 2, 5 and 1, hence the order of π is
lcm(2, 5) = 10. Furthermore, each permutation can be written as a product of transpositions,
because

(i1i2 · · · ir) = (i1i2)(i2i3) · · · (ir−1ir)
for cycles of length r. Because sign is a homomorphism and the sign of a transposition (ij) is
−1 we have

sign(π) = (−1)t(π),

where t(π) is the number of transpositions in the decomposition of π.

Lemma 1.4.2. In Sn the conjugate of a cycle α = (i1 · · · ik) is given by

τατ−1 = (τ(i1) · · · τ(ik)).

Proof. Because of (τ−1τ)(ir) = ir and α(ir) = ir+1 mod k we have

τατ−1(τ(ir)) = τ(ir+1 mod k)

for all 1 ≤ r ≤ k. Let 1 ≤ j ≤ n such that j 6= ir for any r. Then α(j) = j since j is not in the
k-cycle α. Hence τατ−1(τ(j)) = τ(j), and τατ−1 fixes any number which is not of the form
τ(ir) for some i, and we have

τατ−1 = (τ(i1) · · · τ(ik)).

�
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Now the orbits of any element α in Sn form a partition

{1, 2, . . . , n} = O1 ∪ · · · ∪Ok,

which determine a partition of n by

n = n1 + n2 + . . .+ nk

with ni = |Oi|. For example, the element α = (15)(27634)(8) in S8 defines the partition

2 + 5 + 1 = 8.

Note that there are p(8) = 22 partitions of 8.

Proposition 1.4.3. Two elements α and β in Sn are conjugate if and only if they have
the same cycle type, i.e., if and only if they define the same partition of n. In particular, the
number of conjugacy classes in Sn is the number of partitions of n, i.e., we have k(Sn) = p(n).

Example 1.4.4. The following table lists the p(4) = 5 conjugacy classes in S4.

Partition Cycle type Elements
1 + 1 + 1 + 1 1 (1)

1 + 1 + 2 (ab) (12), (13), (14), (23), (24), (34)
1 + 3 (abc) (123), (132), (124), (142), (134), (143), (234), (243)
2 + 2 (ab)(cd) (12)(34), (13)(24), (14)(23)

4 (abcd) (1234), (1432), (1324), (1423), (1243), (1342)

The normal subgroup A4 consists of all elements of even parity, which are given by the cycle
types (1), (abc), (ab)(cd). Since this is a union of conjugacy classes, including (1), A4 is a normal
subgroup of S4. The same is true for the Kleinian 4-group

V4 = {(1), (12)(34), (13)(24), (14)(23)},
which is of course isomorphic to C2 × C2.

Lemma 1.4.5. The alternating group An is generated by cycles of length three.

Proof. Any π ∈ An is the product (possibly empty) of an even number of transpositions,
but the product of each two transpositions can always be written as a product of 3-cycles,
namely (ij)(jl) = (ijl) and

(ij)(kl) = (ij)(jk)(jk)(kl) = (ijk)(jkl)

for i, j, k, l distinct. �

Definition 1.4.6. A group G is called simple, if it does not have a proper normal subgroup.

Theorem 1.4.7 (Galois). The group An is simple for all n ≥ 5.

Proof. One can show that every non-trivial normal subgroup N of An for n ≥ 5 contains
a 3-cycle, and then must contain all 3-cycles. Hence, by Lemma 1.4.5, N = An.
Another proof uses induction and shows it for A5 as follows: the conjugacy class sizes are
1, 12, 12, 20, 15. A non-trivial normal subgroup must contain the conjugacy class of size 1, and
one or more other conjugacy classes. Thus, the order of any normal subgroup must be a sum
of some of these numbers, including the 1. By Lagrange’s theorem, the order must also divide
60. But no such sum among these numbers divides 60, other than 1 and 60 themselves. �

Note that A2 is trivial, A3
∼= C3 and A4 has a proper normal subgroup isomorphic to C2×C2.
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Corollary 1.4.8. The only normal subgroups of Sn for n ≥ 5 are 1, An and Sn.

Proof. If N is normal in Sn, then N ∩ An is normal in An. Hence either N ∩ An = An
or N ∩ An = 1. In the first case N ⊇ An. Since An has index 2 in Sn it follows that N = An
or N = Sn. In the second case, the map n 7→ nAn from N to Sn/An ∼= C2 is injective, and so
N has order 1 or 2. But it cannot have order 2 because no conjugacy class in Sn other than
{1} consists of a single element (and N is the union of conjugacy classes including the trivial
conjugacy class). �

We have seen that the conjugacy classes for Sn are determined by the cycle type. This
is different in the alternating groups. For example, (123) and (132) are not conjugate in A3

although they have the same cycle type, and therefore are conjugate in S3. The 3-cycles form
two different conjugacy classes in A3 and A4, but only one single class in all An, n ≥ 5. A
conjugacy class in Sn splits into two distinct conjugacy classes under the action of An if and
only if its cycle type consists of distinct odd integers. Otherwise, it remains a single conjugacy
class in An. Erdös, Dénes and Turán proved in 1969 the following result [6]:

Proposition 1.4.9. The number of conjugacy classes in An is given as follows:

k(An) =
p(n) + 3q(n)

2

= 2p(n) + 3
∑
r≥1

(−1)rp(n− 2r2).

Here q(n) is the number of partitions of n into distinct, odd parts.

Let us check it for A4. Of course, p(4) = 5, and only 4 = 1 + 3 is a partition into distinct,
odd parts, i.e., q(4) = 1. Hence k(A4) = 4. The other formula yields k(A4) = 2p(4)− 3p(2) =
10− 6 = 4. Indeed, the conjugacy classes of A4 are given by

C1 = {(1)}
C2 = {(123), (142), (134), (243)}
C3 = {(132), (124), (143), (234)}
C4 = {(12)(34), (13)(24), (14)(23)}

1.5. Groups of small order

How many different groups of a given order n are there ? This is a difficult question in
general, but we can answer it for “small” n. Let f(n) denote the number of different groups of
order n. We already know that f(p) = 1 for all primes p. The following table shows the result
up to n ≤ 16.
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n f(n) Groups
1 1 1
2 1 C2

3 1 C3

4 2 C4, C2 × C2

5 1 C5

6 2 C6, S3

7 1 C7

8 5 C8, C2 × C4, C2 × C2 × C2, Q8, D4

9 2 C9, C3 × C3

10 2 C10, D5

11 1 C11

12 5 C12, C2 × C6, C2 × S3, A4, C3 o C4

13 1 C13

14 2 C14, D7

15 1 C15

16 14 C16, C2 × C8, C4 × C4, C4 × C2 × C2, C2 × C2 × C2 × C2,
C2 ×D4, D8, C2 ×Q8, C4 o C4, G

1
16, G

2
16, G

3
16, G

4
16, G

5
16

We have f(p2) = 2, since there are only two groups of order p2 for a prime p, namely Cp × Cp
and Cp2 . For a proof see Proposition 2.2.10. For larger powers of p however, the number is
growing rapidly. We have the following result, see [8] for the lower bound and unpublished
work by Mike Newman and Craig Seeley for the upper bound.

Theorem 1.5.1 (Higman, Newman). The number of groups of prime power order pn is
bounded by

p
2
27
n2(n−6) ≤ f(pn) ≤ p

2
27
n3+O(n5/2)

There is the Millennium project by Besche, Eick and O’Brian [3] of classifying all groups of
order n ≤ 2000, which was published in 2002.

Theorem 1.5.2. There are exactly 49.910.529.484 different groups of order n ≤ 2000. More
than 99% of them have order 210. More precisely, f(210) = 49.487.365.422.

In fact, f(2k), for k = 1, . . . 10 is given by

1, 2, 5, 14, 51, 267, 2328, 56092, 10494213, 49487365422.

Pyber showd in 1993 the following estimate [10].

Proposition 1.5.3 (Pyber). The number of groups of order n is bounded by

f(n) ≤ n( 2
27

+o(1))e(n)2 ,

where e(n) ≤ log2(n) denotes the highest power of any prime dividing n.

For very small n we can easily do the classification now. The first non-trivial case is n = 4.

Proposition 1.5.4. Every group of order 4 is isomorphic to C4 or C2 × C2.

Proof. Let G be a group of order 4. If G has an element of order 4, then G ∼= C4.
Otherwise we have G = {e, a, b, c} and the order of a, b, c must be a proper divisor of 4, which
is 2. So we have a2 = b2 = c2 = e. Also, ab = c, because all other choices for ab are not
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possible, i.e., ab = e would give a = b−1 contradicting b = b−1, and ab = a would imply
b = e. Similarly, ab = b would imply a = e, a contradiction. The same argument shows that
ba = c = ab, ca = b = ac and cb = a = bc. Using these relations, it is easy to check that the
map f : G→ C2 × C2 is an isomorphism, where

f(e) = (1, 1), f(a) = (−1, 1), f(b) = (1,−1), f(c) = (−1,−1).

�

For n = 6 we can prove a more general result.

Proposition 1.5.5. Every group of order 2p for a prime p > 2 is isomorphic to C2p or Dp.
In particular, every group of order 6 is isomorphic to C6 or D3

∼= S3.

Proof. By Cauchy’s theorem 2.2.5, for every prime divisor p of |G| there is an element
of order p in G. We can apply this for p > 2 and 2. Denote by s the element of order
2, and by r the element of order p. Then Cp = 〈r〉 is a normal subgroup of G because of
(G : Cp) = 2, see Lemma 1.3.13. Obviously s 6∈ Cp, so that G = Cp ∪ Cps. This means
G = {1, r, . . . , rp−1, s, rs, . . . , rp−1s}. As Cp is normal, srs−1 = ri for some i ∈ Z. Because of
s2 = e we have

r = s2rs−2 = s(srs−1)s−1 = ri
2

.

This implies i2 ≡ 1 mod p, or i2 = 1 in the finite field Z/pZ. This quadratic equation has
exactly two solutions, namely i = ±1, i.e., i ≡ 1 mod p or i ≡ −1 mod p. In the first case
G is commutative (any group generated by a set of commuting elements is commutative), i.e.,
G = 〈r, s | rp = s2 = e, rs = sr〉 ∼= C2p. In the second case we have srs−1 = r−1, so that
G ∼= Dp. �

Proposition 1.5.6. Every group of order 8 is isomorphic to C8, C2×C4, C2×C2×C2, or
isomorphic to D4, Q8.

Proof. If G is abelian, we know by the theory of modules over a PID that G is isomorphic
to one of the groups C8, C2 × C4, C2 × C2 × C2. Hence suppose that G is non-abelian. The
non-identity elements in G have order 2 or 4. If g2 = e for all g ∈ G then G is abelian, so some
element x ∈ G must have order 4. Let y ∈ G \ 〈x〉. The subgroup 〈x, y〉 properly contains 〈x〉,
so 〈x, y〉 = G. Since G is non-abelian, x and y do not commute. Since 〈x〉 has index 2 in G, it
is a normal subgroup. Therefore

yxy−1 ∈ 〈x〉 = {e, x, x2, x3}.
Since yxy−1 has order 4, yxy−1 = x or yxy−1 = x3 = x−1. The first case is impossible, since x
and y do not commute. Therefore yxy−1 = x−1. The group G/〈x〉 has order 2, so

y2 ∈ 〈x〉 = {e, x, x2, x3}.
Since y has order 2 or 4, y2 has order 1 or 2. Thus y2 = 1 or y2 = x2. Putting this together,
G = 〈x, y〉 where either

x4 = e, y2 = e, yxy−1 = x−1,

or
x4 = e, y2 = x2, yxy−1 = x−1.

In the first case G ∼= D4, and in the second case G ∼= Q8. �



CHAPTER 2

Groups acting on sets and Sylow theory

2.1. Definitions and examples

Definition 2.1.1. Let G be a group and X be a set. A (left) group action of G on X is a
mapping (g, x) 7→ gx, G×X → X such that

(1) g(hx) = (gh)x for all g, h ∈ G and all x ∈ X,
(2) ex = x for the neutral element e ∈ G and all x ∈ X.

The conditions imply that all left multiplications maps Lg belong to Sym(X). Axiom (1)
then just says that L : G → Sym(X), g 7→ L(g) = Lg is a homomorphism. The action is said
to be faithful, or effective, if the homomorphism L is injective, i.e., if

gx = x for all x ∈ X implies g = e.

Example 2.1.2. 1. The group GLn(K) acts on Kn by matrix multiplication (A, x) 7→ Ax.

2. Every group G acts on every set X by the trivial action, i.e., by gx = x for all g ∈ G and all
x ∈ X.

3. The symmetric group Sn acts by permutations on the set X = {1, 2, . . . , n}.
4. Every group G acts on itself by conjugation: with X = G the action is given by (g, x) 7→
gxg−1.

5. For any group G the automorphism group Aut(G) acts on G.

6. The group SL2(C) of complex 2×2 matrices A = ( a bc d ) with det(A) = 1 acts on the Riemann

sphere C = C ∪ {∞} by Moebius transformations

(A, z) 7→ A · z =
az + b

cz + d
,

with A · ∞ = a/c and A · (−d/c) =∞.

Let us verify the axioms for the last example. The identity matrix I acts by Iz = 1z+0
0z+1

= z.

For two matrices A = ( a bc d ), B =
(
α β
γ δ

)
we compute

15
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A · (B · z) = A ·
(
αz + β

γz + δ

)
=
a
(
αz+β
γz+δ

)
+ b

c
(
αz+β
γz+δ

)
+ d

=
(aα + bγ)z + (aβ + bδ)

(cα + dγ)z + (cβ + dδ)

=

(
aα + bγ aβ + bδ
cα + dγ cβ + dδ

)
· z

= (AB) · z.

Definition 2.1.3. Let G be a group acting on a set X. For x ∈ X the set

Gx = {gx | g ∈ G} ⊆ X

is called the orbit of x.

Example 2.1.4. Let G act on itself by conjugation. Then the G-orbits are just the conju-
gacy classes. For x ∈ X = G the conjugacy class of x is the set

{gxg−1 | g ∈ G}.

The G-orbits of an action partition G. A subset of X is stable under the action if and only
if is a union of orbits. For example, a subgroup H of G is normal if and only if it is a union of
conjugacy classes (H is stable under the conjugation action).

Definition 2.1.5. An action of G on X is called transitive, if there is only one orbit, i.e.,
if for any two x, y ∈ X there exists a g ∈ G such that gx = y. The set X is then called a
homogeneous G-set.

For example, Sn acts transitively on X = {1, 2, . . . , n}, since there is a permutation sending
1 to any number, but a non-trivial group G acts never transitively on itself by conjugation,
because {e} is always its own conjugacy class. Hence there are at least two orbits.

Definition 2.1.6. Let G be a group acting on a set X. For x ∈ X the set

Gx = {g ∈ G | gx = x} ⊆ G

is called the stabilizer of x, or the isotropy group of x.

It is a subgroup of G, but need not be a normal subgroup. In fact we have the following
result.

Lemma 2.1.7. For g ∈ G and x ∈ X we have

gGxg
−1 = Ggx.

Proof. Let h ∈ Gx, i.e., hx = x. Then (ghg−1)gx = ghx = gx, hence ghg−1 ∈ Ggx. This
implies gGxg

−1 ⊆ Ggx. Conversely, if h(gx) = gx, then

(g−1hg)x = g−1(h(gx)) = g−1gx = x.

This means g−1hg ∈ Gx, or h ∈ gGxg
−1. �
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Example 2.1.8. Let G act on itself by conjugation. Then the stabilizer of an element x ∈ X
is the so-called centralizer of x in G,

CG(x) = {g ∈ G | gx = xg}.

The center Z(G) of G is the intersection over all centralizers,

Z(G) =
⋂
x∈G

CG(x) = {g ∈ G | gx = xg ∀x ∈ G}.

For a subset S ⊆ X we define the stabilizer of S by

Stab(S) = {g ∈ G | gS = S}.
Again Stab(S) is a subgroup of G, and Stab(x) = Gx for an element x ∈ X. The same argument
as in the proof of Lemma 2.1.7 shows that

Stab(gS) = g · Stab(S) · g−1.

Example 2.1.9. Let G act on itself by conjugation, and let H be a subgroup of G. Then
the stabilizer of H is called the normalizer NG(H) of H in G:

NG(H) = {g ∈ G | gHg−1 = H}.

Note that NG(H) is the largest subgroup of G containing H as a normal subgroup.

Proposition 2.1.10. Let G act on a set X. Then the map

G/Gx → Gx, gGx 7→ gx

is an isomorphism of G-sets, i.e., it is bijective and G-invariant. We have |Gx| = (G : Gx).

Proof. The map is well-defined because, if h ∈ Gx, then ghx = gx. It is injective because
gx = g′x implies that g−1g′x = x, so that g and g′ lie in the same left coset of Gx. It is
surjective by construction, and obviously G-invariant. �

The result is sometimes called the Orbit Stabilizer Theorem, and is written

|G| = |Gx| · |Stab(x)|.

Corollary 2.1.11. The number of conjugates gHg−1 of a subgroup H of G is given by
(G : NG(H)).

2.2. The class equation

When X is finite, it is a union of a finite number of orbits, i.e.,

X =
m⋃
i=1

Oi.

This implies the following result.

Proposition 2.2.1. Let G act on X. Then, for xi ∈ Oi,

|X| =
m∑
i=1

|Oi| =
m∑
i=1

(G : Gxi).

When G acts on itself by conjugation, this formula becomes:
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Proposition 2.2.2 (Class equation).

|G| =
∑
x∈C

(G : CG(x))

= |Z(G)|+
∑
y∈C′

(G : CG(x)),

where x runs over a set C of representatives for the conjugacy classes, and y runs over a set C ′
of representatives for the conjugacy classes containing more than one element.

Note that each summand is a divisor of |G|. So each conjugacy class has size dividing |G|.
This does not follow from Lagrange since conjugacy classes need not be subgroups.

Example 2.2.3. The class equation for S4 is given by

|S4| = 24 = 1 + 6 + 8 + 3 + 6,

see Example 1.4.4. We have Z(S4) = 1.

Often the class equation completely characterizes the group, but there are some groups that
share the same class equation:

Example 2.2.4. Both non-abelian groups of order 8, D4 and Q8 have the class equation

8 = 1 + 1 + 2 + 2 + 2.

For the dihedral group D4, the elements e and r2 have a trivial conjugacy class, i.e., Z(D4) =
{e, r2}, whereas CG(r) = {e, r, r2, r3} so that the conjugacy class of r has (G : CG(r)) = 8

4
= 2

elements, namely {r, r3}. Similarly the conjugacy classes of s and sr are given by {s, sr2} resp.
{sr3, sr}. So the class equation is

8 = 1 + 1 +
8

4
+

8

4
+

8

4
= 1 + 1 + 2 + 2 + 2.

The central elements 1,−1 in Q8 have trivial conjugacy classes, so that Z(Q8) = {±1}, and
the conjugacy classes {i,−i}, {j,−j}, {k,−k} have size 2 each.

The class equation has some important consequences.

Theorem 2.2.5 (Cauchy). Let p be a prime which divides |G|. Then G contains an element
of order p.

Proof. We use induction on |G|. Suppose that there is an element y ∈ G\Z(G) such that
p - (G : CG(y)), then p | |CG(y)| because of

(G : 1) = (G : CG(y)) · (CG(y) : 1).

By induction hypothesis, there is an element of order p in CG(y), and hence in G. Hence we
may suppose that p divides all of the terms (G : CG(y)) in the class equation for non-central
elements y. But then we also have p | |Z(G)|. Since Z(G) is abelian it follows from the structure
theorem that it contains an element of order p. �

Proposition 2.2.6. A finite group G is a p-group, i.e., has pm elements if and only if every
element has order a power of p.

Proof. If |G| = pm then Lagrange’s theorem shows that the order of every element is a
divisor of pm and hence a p-power. Conversely, if q | |G| for a prime q 6= p, then there is an
element g ∈ G with ord(g) = q 6= pk by Cauchy’s theorem. This is a contradiction to the
assumption, so that we obtain |G| = pm for some m. �
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Proposition 2.2.7. Let G be a non-trivial finite p-group. Then its center is non-trivial.

Proof. By assumption (G : 1) is a power of p, so that all terms over y ∈ C ′ in the class
equation are divisible by p. This implies p | |Z(G)|. �

Proposition 2.2.8. A group of order pn has normal subgroups of every possible order
1, p, . . . , pn.

Proof. We use induction on n. Since Z(G) contains an element g of order p by Proposition
2.2.7, N = 〈g〉 is a normal subgroup of order p. Then |G/N | = pn−1, and we may apply the
induction hypothesis. But the normal subgroups of G/N correspond to normal subgroups of G
containing N , so the claim follows for G. �

Lemma 2.2.9. Suppose G contains a subgroup H with H ⊆ Z(G) such that G/H is cyclic.
Then G is abelian.

Proof. Let a be an element in G whose image in G/H generates it. Then every element
of G can be written g = ajh with h ∈ H and j ∈ Z. Because of H ⊆ Z(G) we have

aih · ajh′ = aiajhh′

= ajaih′h

= ajh′ · aih.

�

Proposition 2.2.10. Every group of order p2 for a prime p is commutative, and hence
isomorphic to Cp × Cp or Cp2.

Proof. By Lagrange we have |Z(G)| ∈ {1, p, p2}, and because of Proposition 2.2.7 we can
exclude order 1, which means that |G/Z(G)| ∈ {1, p}. In either case, G/Z(G) is cyclic so that
G is abelian by Lemma 2.2.9. �

How many groups of order p3 are there? For p = 2 we have answered this in Proposition
1.5.6. For any prime p we consider the group

Aff(Z/(p2)) =

{(
a b
0 1

)
| a, b ∈ Z/(p2), a 6= 0

}
⊆ GL2(Z/(p2))

of order p2ϕ(p2) = p3(p − 1), which is called the affine group over the ring Z/(p2). It has a
unique “Sylow p-subgroup” Γ(p), i.e., a normal subgroup of order p3 given by

Γ(p) =

{(
a b
0 1

)
| a, b ∈ Z/(p2), ap = 1 in (Z/(p2))×

}
.

It is the kernel of the homomorphism Aff(Z/(p2))→ (Z/(p2))× given by ( a b0 1 ) 7→ ap, and it has
an element of order p2, namely ( 1 1

0 1 ).

The Heisenberg group over Z/(p) is defined by

Heis(Z/(p)) =


1 a b

0 1 c
0 0 1

 | a, b, c ∈ Z/(p)

 .
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For p = 2 the groups Γ(2) and Heis(Z/(2)) are both isomorphic to D4. For p > 2 we obtain
two non-isomorphic groups which are both non-abelian. In fact, all non-trivial elements in
Heis(Z/(p)) for p > 2 have order p, since1 a b

0 1 c
0 0 1

p

=

1 0 p(p−1)
2

ac
0 1 0
0 0 1

 = I,

because p(p−1)
2
≡ 0 mod p for all p > 2. This is not the case in the group Γ(p), as we have seen.

Theorem 2.2.11. Every group of order p3 for a prime p > 2 is isomorphic to one of the
groups Cp × Cp × Cp, Cp × Cp2, Cp3, Heis(Z/p) or Γ(p).

The proof is due to Hölder (1893).

2.3. The Sylow theorems

Definition 2.3.1. Let G be a group and let p be a prime dividing |G|. A subgroup of G is
called a Sylow p-subgroup of G if its order is the highest p-power dividing |G|.

Example 2.3.2. P = {(1), (123), (132)} is a Sylow 3-subgroup of S4, and

Q = {(1), (1234), (13)(24), (1432), (24), (14)(23), (13), (12)(34)}
is a Sylow 2-subgroup of S4 which is isomorphic to D4.

Here we have |S4| = 24 = 23 · 3, and r = (1234), s = (24).

Lemma 2.3.3. Let H be a p-group acting on a finite set X, and let XH be the set of points
fixed by H, then

|X| ≡ |XH | mod p.

In particular we have
|H| ≡ |Z(H)| mod p.

Proof. By the orbit-stabilizer theorem we have (H : Stab(x0)) = |Hx0|. Because H is a
p-group this is a power of p, and either Hx0 consists of a single element, or |Hx0| is divisible
by p. Since X is the disjoint union of the orbits, the first claim follows. When we apply this to
the action by conjugation, the second claim follows. �

Theorem 2.3.4 (Sylow I). Let G be a finite group and p be a prime. If pr | |G| for some
r ≥ 1, then G has a subgroup of order pr.

Proof. By Proposition 2.2.8 it suffices to prove the statement where pr || |G| is the highest
power of p dividing the order of G, because if G has a subgroup of order pr, then it also has
subgroups of all possible lower orders 1, p, p2, . . . , pr. So we may assume that |G| = prm with
p - m. Let

X = {S ⊆ G | |S| = pr}.
Define a G-action on X by

(g, A) 7→ gA = {ga | a ∈ A}.
Let A ∈ X, i.e., A = {g1, . . . , gpr}, and let

H = Stab(A) = {g ∈ G | gA = A}.
For any gi ∈ A the map h 7→ hgi, H → A is injective because of the cancellation law, and so

(H : 1) ≤ |A| = pr.
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So in the equation
(G : 1) = (G : H)(H : 1)

we know that (G : 1) = prm with p - m, that (H : 1) ≤ pr, and that (G : H) is the number of
elements in the orbit of A. Hence it is enough to find one set A such that p doesn’t divide the
number of elements in its orbit, because then we can conclude (for this particular A) that the
subgroup H = Stab(A) has order pr, and we are done. The number of elements in X is

|X| =
(
prm

pr

)
=

(prm)(prm− 1) · · · (prm− i) · · · (prm− pr + 1)

pr(pr − 1) · · · (pr − i) · · · (pr − pr + 1)
.

Because of i < pr the power of p dividing prm− i equals the power of p dividing i. The same
is true for pr − i. Therefore the corresponding terms on top and bottom are divisible by the
same powers of p, and so p does not divide |X|. Because the orbits form a partition of X, at
least one orbit (for a set A) is not divisible by p. This finishes the proof. �

Corollary 2.3.5. The converse of Lagrange’s theorem is true for p-groups.

The converse of Lagrange’s theorem is false in general: if G is a finite group and d | |G|,
then there may not be a subgroup of G with order d. The simplest example of this is the group
A4, of order 12, which has no subgroup of order 6. For an elegant proof see section 3.4, which
has more results on the converse of Lagrange’s theorem. Of course, we also can just list all
subgroups of A4 by hand:

Example 2.3.6. The subgroups of A4 are given as follows:

Order # Subgroups
1 1 {(1)}
2 3 {(1), (12)(34)}, {(1), (13)(24)}, {(1), (14)(23)}
3 4 {(1), (123), (132)}, {(1), (243), (234)} , {(1), (142), (124)},

{(1), (134), (143)}
4 1 {(1), (12)(34), (13)(24), (14)(23)}
12 1 {1, (12)(34), (13)(24), (14)(23), (123), (243), (142), (134),

(132), (143), (234), (124)}

This also shows that there is no subgroup of order 6 in A4, although 6 | 12 = |A4|. According
to Sylow I there is a subgroup of order 2, 22, and 3. The group of order 4 is the unique Sylow
2-subgroup, and the four groups of order 3 the Sylow 3-subgroups.

Example 2.3.7. The subgroup U of upper unitriangular matrices in the group G = GLn(Fp)
forms a Sylow p-subgroup of G.

A triangular matrix is called unitriangular, if all diagonal elements are 1. It is clear that

|U | = p
n(n−1)

2 ,

and a simple counting argument shows that

|G| = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1)

= p
n(n−1)

2 ·m,
where p - m. Hence U is a Sylow p-subgroup of G.

Sylow I gives another proof of Cauchy’s Theorem 2.2.5:
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Corollary 2.3.8 (Cauchy). If p divides |G|, then G contains an element of order p.

Proof. By Sylow I, G has a subgroup of order p. Hence any g 6= e is an element of order
p in G. �

Lemma 2.3.9. Let P be a Sylow p-subgroup of G, and let H be a p-subgroup. If H normalizes
P , i.e., if H ⊆ NG(P ), then H ⊆ P . In particular, no Sylow p-subgroup of G other than P
normalizes P .

Proof. Because H and P are subgroups of NG(P ) with P normal in NG(P ), HP is a
subgroup. The second isomorphism theorem yields

H/H ∩ P ∼= HP/P.

Therefore (HP : P ) is a power of p, because (H : 1) is a power of p by assumption. But we
have

(HP : 1) = (HP : P )(P : 1),

and (P : 1) is the largest power of p dividing (G : 1), hence also the largest power of p dividing
(HP : 1). Thus (HP : P ) = p0 = 1, and H ⊆ P . �

Theorem 2.3.10 (Sylow II). Any two Sylow p-subgroups are conjugate.

Proof. Let X be the set of Sylow p-subgroups in G, and let G act on X by conjugation,
i.e., by

(g, P ) 7→ gPg−1.

Let O be one of the G-orbits. We have to show that O = X. Let P ∈ O, and let P act through
the action of G. This single G-orbit O may break up into several P -orbits, and one of them
will be P . In fact this is the only one-point orbit because {Q} is a P -orbit if and only if P
normalizes Q, which happens only for Q = P , by Lemma 2.3.9. Hence the number of elements
in every P -orbit other than {P} is divisible by p, and we have

|O| ≡ 1 mod p.

Suppose that there exists a P 6∈ O. Then the previous argument gives that the number of
elements in every P -orbit is divisible by p, because there are no one-point orbits in this case.
So we obtain |O| ≡ 0 mod p, a contradiction. Hence there is no P with P 6∈ O, so that
O = X. �

Theorem 2.3.11 (Sylow III). Let sp be the number of Sylow p-subgroups in G and let
|G| = prm with p - m. Then sp | m, and sp = (G : NG(P )) for any Sylow p-subgroup P of G.
We have

sp ≡ 1 mod p.

Proof. In the proof of Sylow II we already showed that sp = |O| ≡ 1 mod p. Let P be a
Sylow p-subgroup of G. In Corollary 2.1.11 we showed that the number of conjugates of P is
(G : NG(H)). But this is just sp. We have

(G : NG(P )) =
(G : 1)

(NG(P ) : 1)

=
(G : 1)

(NG(P ) : P )(P : 1)

=
m

(NG(P ) : P )
,
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which is a factor of m. Hence sp | m. �

Corollary 2.3.12. Every p-subgroup of G is contained in a Sylow p-subgroup.

Proof. Let H be a p-subgroup of G, and let H act on the set X of Sylow p-subgroups by
conjugation. Because |X| = sp is not divisible by p by Sylow III, XH must be nonempty by
Lemma 2.3.3. This means that at least one H-orbit consists of a single Sylow p-subgroup. But
then H normalizes P and Lemma 2.3.9 implies that H ⊆ P . �

Corollary 2.3.13. A Sylow p-subgroup P of G is normal if and only if it is the only Sylow
p-subgroup.

Proof. Suppose that P is normal. Then, by Sylow II, P is the only Sylow p-subgroup:
another Sylow p-subgroup Q satisfies Q = gPg−1 = P . Conversely, suppose that sp = 1. Then
gPg−1 = P , so that P is normal. �

Lemma 2.3.14. Let N1, N2 CG be normal subgroups of a finite group G, of coprime order.
Then elements of N1 commute with elements of N2.

Proof. Since N1 and N2 have relatively primes orders, N1 ∩ N2 is the trivial group by
Lagrange’s theorem. For a ∈ N1 and b ∈ N2, we have

aba−1b−1 = (aba−1)b−1 = a(ba−1b−1) ∈ N1 ∩N2,

so that

aba−1b−1 = e

and reordering, we get ab = ba. �

Corollary 2.3.15. Suppose that G has only one Sylow p-subgroup for each prime p dividing
|G|. Then G is a direct product of its Sylow p-subgroups.

Proof. Let P1, . . . , Pk be the Sylow-subgroups of G, and let |Pi| = prii with the different
primes pi which divide |G|. By Corollary 2.3.13 each Pi is normal in G, so that the product
P1 · · ·Pk is also normal in G. We shall prove by induction on l that

P1 · · ·Pl ∼= P1 × · · · × Pl.

For l = 1 there is nothing to prove, so that we may assume the statement for l − 1. Then
P1 · · ·Pl−1 and Pl are both normal subgroups of G, of relatively prime orders. Hence by
Lemma 2.3.14, their elements commute in G. Hence the map

(P1 × · · · × Pl−1)× Pl → (P1 · · ·Pl−1) · Pl
defined by multiplying elements together, is an isomorphism also, proving the induction step.
For k = l, we get that

P1 · · ·Pk ∼= P1 × · · · × Pk,
a subgroup of G of order

∏
i p

ri
i , the order of G. Hence this subgroup must be the whole of G

and so

G ∼= P1 × · · · × Pk.
�

Example 2.3.16. Every group G of order 99 is commutative.
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We have 99 = 32 · 11 and s11 | 9, s11 ≡ 1 mod 11. This implies s11 = 1. Hence there is
exactly one Sylow 11-subgroup H, which is normal in G. Similarly, s3 | 11 and s3 ≡ 1 mod 3,
so that s3 = 1. Hence there is exactly one Sylow 3-subgroup K, which is normal in G. By
Corollary 2.3.15, G = H ×K, and both H and K are commutative. Hence G is commutative.

Remark 2.3.17. The same argument shows that every group of order p2q with primes p < q
and q 6≡ 1 mod p is commutative.

Proposition 2.3.18. Let G be a group of order pq with primes p < q and q 6≡ 1 mod p.
Then G is cyclic.

Proof. By Cauchy’s Theorem, G has an element a of order p and an element b of order q.
Let P = 〈a〉 and Q = 〈b〉. These subgroups have size p and q, and P is a Sylow p-subgroup, Q
is a Sylow q-subgroup. By Sylow III we have sp | q and sp ≡ 1 mod p. Since q 6≡ 1 mod p we
must have sp = 1, so that P is normal in G. Similarly we have sq | p and sq ≡ 1 mod q. Since
1 < p < q and q 6≡ 1 mod p we must have sq = 1 as well. Therefore Q is normal in G. Now we
can apply Lemma 2.3.14 to show that the elements of P commute with the elements of Q. If
we apply this to the generators a and b, we have ab = ba, and ord(a) and ord(b) are coprime.
Hence ord(ab) = pq, and ab generates G. �

Example 2.3.19. Every group of order 15 is cyclic.

Proposition 2.3.20. Let G be the group GL2(Fp) for p prime. Then any element of order
p in G is conjugate to an upper unitriangular matrix ( 1 a

0 1 ). The number of Sylow p-subgroups
is p+ 1.

Proof. The order of G is (p2−p)(p2−1) = p(p+1)(p−1)2. Therefore a Sylow p-subgroup
has size p. The matrix ( 1 1

0 1 ) has order p, hence it generates a Sylow p-subgroup P , which
consists of all upper unitriangular matrices. Since all Sylow p-subgroups are conjugate, any
matrix of order p in G is conjugate to some power of ( 1 1

0 1 ).
By Sylow III, the number of Sylow p-subgroups is given by (G : NG(P )). Let us compute
NG(P ). For a matrix ( a bc d ) to lie in NG(P ) means it conjugates ( 1 1

0 1 ) to some power ( 1 a
0 1 ).

Since (
a b
c d

)(
1 1
0 1

)(
a b
c d

)−1
=

1

ad− bc

(
ad− bc− ac a2

−c2 ad− bc+ ac

)
,

we see that ( a bc d ) ∈ NG(P ) precisely when c = 0. Therefore NG(P ) = {( a b0 d )} in G, which has
size p(p− 1)2. It follows that

sp = (G : NG(P )) =
p(p+ 1)(p− 1)2

p(p− 1)2
= p+ 1.

�

Corollary 2.3.21. The number of elements of order p in GL2(Fp) is p2 − 1.

Proof. Each Sylow p-subgroup has p−1 elements of order p. Different Sylow p-subgroups
only intersect trivially, so the number of elements of order p is (p− 1)sp = p2 − 1. �

After Theorem 2.2.10 we had claimed that Aff(Z/(p2) has a unique Sylow p-subgroup,
namely Γ(p). We can now prove this.

Proposition 2.3.22. The group Aff(Z/(p2)) for p prime has a unique Sylow p-subgroup.



2.4. APPLICATIONS TO (NON)-SIMPLE GROUPS 25

Proof. The group has order p3(p− 1), so a Sylow p-subgroup has order p3. By Sylow III
we have sp | (p− 1) and sp ≡ 1 mod p. Therefore sp = 1. �

This unique Sylow p-subgroup Γ(p) is a non-abelian group of order p3. It has an element of
order p2, namely ( 1 1

0 1 ). Therefore it is not isomorphic to Heis(Z/(p)) for p > 2, since in that
case every non-identity element of Heis(Z/(p)) has order p, see the computation after Theorem
2.2.10. Hence we have the following result.

Corollary 2.3.23. The groups Γ(p) and Heis(Z/(p)) of order p3 are non-isomorphic for
p > 2, and isomorphic for p = 2.

2.4. Applications to (non)-simple groups

Recall that a group G is simple, if it has no nontrivial normal subgroup. Note that a p-
group can never be simple; indeed, by Proposition 2.2.7, every p-group G has a nontrivial center
Z(G) ≤ G, which is certainly a non-trivial normal subgroup. We can apply the Sylow Theorems
to show that groups of more general order also have non-trivial proper normal subgroups, and
hence they too cannot be simple. We start with a Lemma.

Lemma 2.4.1. Let G be a finite group and p be the smallest prime dividing |G|. Then any
subgroup H of index p is normal in G.

Proof. Let H be a subgroup of G such that (G : H) = p. Let G act on the set of left
cosets G/H by left multiplication. This action is non-trivial, so that it gives rise to a non-trivial
group homomorphism

θ : G→ Sym(G/H) = Sp.

Let N = ker(θ), a normal subgroup of G; N fixes the identity coset, so N ≤ H. Suppose that
N 6= H. We have

(G : N) = (G : H)(H : N) = p(H : N).

Since we assume that (H : N) > 1, there exists a prime q dividing it. Since p is the smallest
prime dividing |G| we have p ≤ q. Hence

pq | (G : N) =
|G|
|N |

= |im(θ)| | p! = |Sp|.

But pq | p! is impossible for q ≥ p, and we obtain a contradiction. Hence N = H is a normal
subgroup of G. �

Proposition 2.4.2. Let G be a group of order pqr for primes p < q and r ≥ 1. Then G is
not simple.

Proof. Let H be a Sylow q-subgroup of G. Then Lemma 2.4.1 shows that H is normal.
Since |H| = qr, this is a proper normal subgroup. �

Here is another result of the same nature, whose proof also uses Sylow theory.

Proposition 2.4.3. Let G be a group of order 2pn, 4pn, or 8pn for an odd prime p. Then
G is not simple.

Proof. Let |G| = 2mpn with 1 ≤ m ≤ 3, P be a Sylow p-subgroup of G, and N = NG(P ),
so that sp = (G : N). By Sylow III we have sp | 2m and sp ≡ 1 mod p. If sp = 1, then P is
normal and G is not simple. Hence sp = 4 or sp = 8.

Case 1: sp = 4, m ≥ 2 and 4 ≡ 1 mod p, i.e., p = 3. The action by conjugation of G on the
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set of Sylow 3-subgroups defines a homomorphism G → S4, which must be injective, because
G is simple. Therefore 2m3n = |G| | 4!, and hence n = 1. Now a Sylow 2-subgroup Q has index
3, and so we have a homomorphism ϕ : G → Sym(G/Q) ∼= S3. Then ker(ϕ) is a non-trivial
normal subgroup of G, because |G| = 2m3 ≥ 12, and G is not simple.

Case 2: sp = 8, m = 3 and 8 ≡ 1 mod p, i.e., p = 7. As before we obtain 8pn = |G| | 8!, hence
n = 1 and |G| = 56, s7 = 8. Therefore G has 48 elements of order 7, and so there can be only
one Sylow 2-subgroup, which must be therefore normal. Hence G is not simple. �

All these results are special cases of the following famous result of Burnside, which we
mention without proof.

Theorem 2.4.4 (Burnside 1901). Let G be a group of order prqs for primes p < q and
r, s ≥ 1. Then G is not simple.

This result cannot be generalized to groups of order pr11 p
r2
2 p

r3
3 , because |A5| = 60 = 22 · 3 · 5,

and A5 is simple. It turns out that the smallest non-abelian simple group has order 60. The
Sylow Theorems show that there is no other simple group of order 60 besides A5.

Proposition 2.4.5. Every simple group of order 60 is isomorphic to A5.

Proof. Suppose that G is simple, and |G| = 60. Then s5 ≥ 2, because otherwise the Sylow
5-subgroup would be a proper normal subgroup of G. We have s5 | 12 and s5 ≡ 1 mod 5, so
that s5 = 6.

Case 1: There exists a subgroup U 6= G of index n = (G : U) ≤ 5.
In this case the action of G on the cosets G/U yields a non-trivial homomorphism

ϕ : G ↪→ Sym(G/U) = Sn

for n ≤ 5. Since G is simple, ker(ϕ) must be trivial, because ϕ is non-trivial. This implies
n = 5. Then G is a normal subgroup of index 2 in S5, so that G ∼= A5 by Corollary 1.4.8.

Case 2: For each proper subgroup U ≤ G we have (G : U) ≥ 6.
We will show that this case cannot occur. Let P be a Sylow 2-subgroup of G. We have s2 ≥ 2
and s2 | 15, s2 ≡ 1 mod 2, so that s2 = 3, 5, 15. Actually we have

s2 = (G : NG(P )) ≥ 6

by assumption, so that s2 = 15. We need a further case distinction.

Case 2a: For each two different Sylow 2-subgroups P and Q we have P ∩Q = 1.
In this case we have 15(4 − 1) elements of order 2 or 4 (the non-identity elements in the 15
Sylow 2-subgroups), and 6(5− 1) elements of order 5, from the 6 Sylow 5-subgroups. Together
we would have

(G : 1) ≥ 15(4− 1) + 6(5− 1) + 1 = 70,

which is a contradiction to (G : 1) = 60.

Case 2b: There exist two different Sylow 2-subgroups P and Q of G with P ∩Q 6= 1.
Let R = P ∩ Q. As |R| divides |P | = 4, we have |R| = 2, 4. However, |R| = 4 would imply
that P = Q = P ∩ Q, a contradiction. Hence |R| = 2. Now NG(R) 6= G, because otherwise
R would be a proper normal subgroup of G, contradicting the assumption that G is simple.
The Sylow 2-subgroups are of order 4, hence commutative. So P and Q are abelian, and thus
P,Q ≤ NG(R). Let S = 〈P,Q〉. We have S ≤ NG(R), and hence S 6= G. Also, 4 | |S|, |S| | 60
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and |S| > 4, since otherwise P = Q = S, a contradiction. So |S| = 12, 20 and (G : S) ≤ 60
12

= 5,
which is a contradiction to the assumption of Case 2. �





CHAPTER 3

Semidirect products and applications

3.1. On automorphism groups

Recall from Definition 1.2.6 that for completely general reasons, the set of automorphisms
Aut(G) of a group G itself forms a group. The inner automorphisms of G are the automorphims
ig : G → G given by ig(x) = gxg−1. Inner automorphisms form a subgroup Inn(G) ≤ Aut(G)
of the automorphism group of G.

Lemma 3.1.1. Let G be a group. Then G/Z(G) ∼= Inn(G).

Proof. Consider the map ϕ : G → Aut(G), g 7→ ig. It is a homomorphism (check!)
with kernel Z(G) (check!). By the isomorphism theorem, G/ ker(ϕ) ∼= im(ϕ), which gives the
claim. �

Example 3.1.2. The inner automorphism group of Q8 is isomorphic to C2 × C2.

Since Z(Q8) = {±1}, Inn(Q8) ∼= Q8/{±1} ∼= C2 × C2. In fact, Aut(Q8) ∼= S4.

Lemma 3.1.3. Inn(G) is a normal subgroup of Aut(G).

Proof. Clearly Inn(G) is a subgroup. Let g ∈ G and α ∈ Aut(G). Then we have

(α ◦ ig ◦ α−1)(x) = α(g · α−1(x) · g−1)
= α(g) · x · α(g)−1

= iα(g)(x).

�

Definition 3.1.4. Let G be a group. The quotient group

Out(G) = Aut(G)/Inn(G)

is called the outer automorphism group of G. If Out(G) is trivial and G has a trivial center,
then G is said to be complete.

A group G is complete if and only if the map g 7→ ig, G → Inn(G) is an isomorphism.
Hence a complete group is isomorphic to its automorphism group: G ∼= Aut(G). The converse
need not be true. In fact, D4

∼= Aut(D4), but D4 is not complete, because it has a non-trivial
center.
Clearly an abelian groups satisfies Aut(G) ∼= Out(G). We mention the following result.

Proposition 3.1.5. The group Sn is complete for n 6= 2, 6.

We have Out(S6) ∼= C2, so that S6 is not complete. Also Z(S2) = S2, and hence S2 is not
complete.

29
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3.2. Semidirect products

A semidirect product of two groups is a generalization of the direct product, involving group
automorphisms.

Let N be a normal subgroup of a group G. Each element g ∈ G defines an automorphism
of N by n 7→ gng−1, and this defines a homomorphism

θ : G→ Aut(N), g 7→ ig|N .

Suppose that there exists a subgroup Q of G such that the canonical homomorphism π : G→
G/N maps Q isomorphically onto G/N . In this case we can reconstruct G from the triple
(N,Q, θ|Q). Indeed, every g ∈ G can be written uniquely in the form g = nq with n ∈ N and
q ∈ Q, where q must be the unique element of Q mapping to gN ∈ G/N , and n must be gq−1.
Thus we have a one-to-one correspondence of sets

G↔ N ×Q.

The product of two elements g = nq and g′ = n′q′ is given as follows

gg′ = (nq)(n′q′)

= n(qn′q−1)qq′

= n · θ(q)(n′) · qq′.

Definition 3.2.1. A group G is the semidirect product of its subgroups N and Q, if N
is normal and G → G/N induces an isomorphism Q → G/N . We write G = N o Q. More
precisely we write G = N oθ Q, where θ : Q → Aut(N) gives the action of Q on N by inner
automorphisms. Note that Q need not be a normal subgroup of G.

Remark 3.2.2. Equivalently, G is a semidirect product of its subgroups N and Q if N is
normal in G, NQ = G, and N ∩Q = 1.

Example 3.2.3. 1. In Dn for n ≥ 2 we have N = 〈r〉 = Cn and Q = 〈s〉 = C2 with

Dn = N oθ Q = Cn oθ C2,

where θ(s)(ri) = r−i.

2. Sn = An o C2, because An is a normal subgroup of index 2 in Sn, and Q = 〈(12)〉 maps
isomorphically onto Sn/An.

3. The group Cp2 for p prime is not a semidirect product of non-trivial subgroups, because it
has only one subgroup of order p.

4. Q8 cannot be written as a semidirect product of two non-trivial subgroups.

Turning things round, given two groups N and Q and a homomorphism θ : Q→ Aut(N), we
can construct the semidirect product N oθ Q (sometimes called the outer semidirect product)
as follows. As a set, let G = N ×Q. Define the composition in G by

(n, q)(n′, q′) = (n · θ(q)(n′), qq′).(3.1)

Proposition 3.2.4. The above composition law makes G into a group, which is the semidi-
rect product N oθ Q.
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Proof. Writing qn for θ(q)n we have

((n, q)(n′, q′))(n′′, q′′) = (n · qn′ · qq
′
n′′, qq′q′′)

= (n, q)((n′, q′)(n′′, q′′)).

Hence the associative law holds. Because θ(1) = 1 and q1 = 1,

(1, 1)(n, q) = (n, q) = (n, q)(1, 1).

Hence (1, 1) is an identity element. Also,

(n, q)(q
−1

n, q−1) = (1, 1)

= (q
−1

n, q−1)(n, q),

and so (q
−1
n, q−1) is an inverse for (n, q). Thus G is a group. It is not difficult to see that N is

a normal subgroup with QN = G and N ∩Q = 1, so that G = N oQ. Moreover, when N and
Q are regarded as subgroups of G, the action of Q on N is that given by θ. �

Remark 3.2.5. The direct product N ×Q is isomorphic to the semidirect product N oθ Q
if and only if θ is the trivial homomorphism Q → Aut(N) given by θ(q)(n) = n for all q ∈
Q, n ∈ N .

3.3. Applications to classification questions

Example 3.3.1. Every group of order 6 is a semidirect product, namely C6
∼= C3×C2 and

S3
∼= C3 oθ C2.

Indeed, there are only two homomorphisms θ : C2 → Aut(C3) ∼= C2. The trivial one gives
rise the the direct product C3 × C2, and the other one to C3 oθ C2. In fact, it coincides with
the semidirect product D3 = C3 oθ C2 from Example 3.2.3, and we have D3

∼= S3.

Example 3.3.2. Every non-abelian group of order p3 for p > 2 is a semidirect product.

Such a group either has an element a of order p2, or it doesn’t. In the first case let N = 〈a〉,
and Q = 〈b〉 for an element b of order p. Then Aut(N) ∼= Cp−1 × Cp, and the second factor is
generated by the automorphism β : a 7→ a1+p. We have βk(a) = a1+kp. Define θ : Q→ Aut(N)
by b 7→ β. The group G := N nθ Q has generators a, b and defining relations

ap
2

= 1, bp = 1, bab−1 = a1+p.

It is isomorphic to the group Γ(p).

In the second case, take two different elements a, b of order p, and let N = 〈a, b〉 be the product
of the cyclic groups 〈a〉 and 〈b〉. Let Q = 〈c〉 with another element c of order p. Define
θ : Q→ Aut(N) to be the homomorphism such that

θ(ci)(a) = abi, θ(ci)(b) = b.

The group G := N nθ Q is of order p3, with generators a, b, c and defining relations

ap = bp = cp = 1, ab = cac−1, [b, a] = [b, c] = 1,

where [g, h] := ghg−1h−1 denotes the commutator of two elements. This group is isomorphic
to Heis(Z/(p)). For p > 2 it does not have an element of order p2. When p = 2, then G ∼= D4,
which does have an element of order 22.

We can now extend Proposition 2.3.18.
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Proposition 3.3.3. Let G be a group of order pq with primes p < q. If q 6≡ 1 mod p, then
G ∼= Cpq. If q ≡ 1 mod p, then G is isomorphic to either Cpq, or to the non-abelian group{(

a b
0 1

)
| a ∈ (Z/(q))×, b ∈ Z/(q), ap ≡ 1 mod q

}
∼= Cq o Cp.

Proof. Let P be a Sylow p-subgroup of G, and Q be a Sylow q-subgroup of G. We have
P ∼= Cp, Q ∼= Cq and (G : Q) = p, which is the smallest prime dividing (G : 1). By Lemma
2.4.1, Q is normal. Because P maps bijectively onto G/Q, we have that G = Q o P . Since
Aut(Q) ∼= Cq−1 we obtain G = Q × P ∼= Cq × Cp ∼= Cpq, unless p | (q − 1), i.e., q ≡ 1 mod p.
In that case the cyclic group Aut(Q) has a unique subgroup A of order p. In fact, A consists
of the automorphisms x 7→ xi for i ∈ Z/qZ with ip = 1. Let a and b be generators of P and Q
respectively, and let the action of a on Q by conjugation be x 7→ xj with j 6= 1 in Z/qZ. Then

G = 〈a, b | ap = bq = 1, aba−1 = bj〉,

which is the semidirect product Qo P with this action of P on Q by conjugation. Choosing a
different j amounts to choosing a different generator a for P , and so gives a group isomorphic
to G. By definition, this group is non-abelian. In fact it is isomorphic to the subgroup of
Aff(Z/(q)) given above. �

The semidirect product of C3 and C4 given by the unique non-trivial homomorphism

θ : C4 → Aut(C3) ∼= C2,

namely the one sending a generator of C4 to the map a 7→ a2, gives a non-abelian group C3oθC4

of order 12. There are only two more non-abelian groups of order 12, namely the obvious direct
product C2 × S3, and the alternating group A4.

Proposition 3.3.4. There are 5 different groups of order 12, namely C12 and C2×C6 and
the three non-abelian groups C2 × S3, A4 and C3 o C4.

Proof. Let G be a group of order 12, and let P be a Sylow 3-subgroup. We may assume
that G is non-abelian.

Case 1: Assume that P is not normal. Then P does not contain a non-trivial normal subgroup
of G, and so the action on the left cosets

ϕ : G→ Sym(G/P ) ∼= S4

is injective, and its image is a subgroup of order 12 in S4. By Sylow III, s3 = 4, so that G
has exactly 8 elements of order 3. But all elements of S4 of order 3 are in A4, and so ϕ(G)
intersects A4 in a subgroup with at least 8 elements.. By Lagrange’s Theorem ϕ(G) = A4, and
so G ∼= A4.

Case 2: Assume that P is normal. Then G = P o Q with a Sylow 2-subgroup Q of order
4. Either Q ∼= C4 or Q ∼= C2 × C2. In the first case there is a unique non-trivial map
Q ∼= C4 → Aut(P ) ∼= C2, and hence we obtain the group C3 oθ C4 from above. In the second
case there are exactly 3 non-trivial homomorphisms θ : Q → Aut(P ), but the three groups
resulting are all isomorphic to S3 × C2 with C2

∼= ker(θ). �

Remark 3.3.5. Note that

Aff(Z/(6)) ∼= D6
∼= D3 × C2

∼= S3 × C2,



3.3. APPLICATIONS TO CLASSIFICATION QUESTIONS 33

and
PSL2(F3) ∼= A4.

Indeed, PSL2(F3) has no normal Sylow 3-subgroup, and hence is isomorphic to A4 by the above
proof.
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