Reynolds Operator \& Finite Generation of Invariant Rings

(copyright Rafael Oliveira)

Finite Generation Problem

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n} \quad$ permuting coordinates
(2) $G=\operatorname{SL}(2), V=\mathbb{C}^{d+1}$
linear transformations of curves
${ }^{1}$ Today: finite groups and $\mathbb{S L}(n)$. More generally linearly-reductive
- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n} \quad$ permuting coordinates
(2) $G=\mathbb{S L}(2), V=\mathbb{C}^{d+1} \quad$ linear transformations of curves
- Invariant polynomials form a subring of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^{G}$
- Question

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^{G}$ finitely generated as a \mathbb{C}-algebra?

$$
\mathbb{C}\left[f_{1}, \ldots, f_{t}\right]=\mathbb{C}[V]^{G}
$$

Finite Generation Problem

- Let G be a nice ${ }^{1}$ group and V be a \mathbb{C}-vector space
- G acts linearly on V if

$$
g \circ(\alpha u+\beta v)=\alpha(g \circ u)+\beta(g \circ v)
$$

- Examples:
(1) $G=S_{n}, V=\mathbb{C}^{n} \quad$ permuting coordinates
(2) $G=\mathbb{S L}(2), V=\mathbb{C}^{d+1}$
linear transformations of curves
- Invariant polynomials form a subring of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^{G}$
- Question

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^{G}$ finitely generated as a \mathbb{C}-algebra?

- Last lecture, we saw this was the case for first example. Is this a general phenomenon?

- Hilbert (twice) 1890, 1893: YES!
${ }^{1}$ Today: finite groups and $\mathbb{S L}(n)$. More generally linearly=reductive

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[x]^{G}$

Ring of Invariant Polynomials

- G acts linearly on $V=\mathbb{C}^{N}$, let $\mathbb{C}[\mathbf{x}]=\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ be the polynomial ring over \mathbb{V}
- Invariant polynomials form a subring of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^{G}$
- For the ring of symmetric polynomials, we know that

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, e_{2}, \ldots, e_{n}\right]
$$

where

$$
e_{d}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{S \subset[n] \\|S|=d}} \prod_{i \in S} x_{i}
$$

- Every symmetric polynomial is itself a polynomial function of the elementary symmetric polynomials
- Elementary symmetric polynomials are a fundamental system of invariants

Proof of Invariant Ring of Symmetric Polynomials

(optional material)

- Proof due to van der Waerden using monomial ordering!
- Use degree lexicographic order
- Every symmetric polynomial $p(x)$ has a non-zero leading term
 with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$
(0) Then

$$
p(x)-L C(p) \cdot e_{1}^{a_{1}-a_{2}} \cdot e_{2}^{a_{2}-a_{3}} \cdots e_{n-1}^{a_{n-1}-a_{n}} \cdot e_{n}^{a_{n}}
$$

has smaller leading monomial! division algorithm!

- Procedure must terminate because of well-ordering of monomial ordering!

Proof of Invariant Ring of Symmetric Polynomials

(optional material)

- Proof due to van der Waerden using monomial ordering!
- Use degree lexicographic order
- Every symmetric polynomial $p(x)$ has a non-zero leading term

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$

- Then

$$
p(x)-L C(p) \cdot e_{1}^{a_{1}-a_{2}} \cdot e_{2}^{a_{2}-a_{3}} \cdots e_{n-1}^{a_{n-1}-a_{n}} \cdot e_{n}^{a_{n}}
$$

has smaller leading monomial! division algorithm!

- Procedure must terminate because of well-ordering of monomial ordering!
- Can we generalize this to work for every finite group?

Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!

[^0]
Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$
- R is a linear map
- $R(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
- $R(p q)=p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
- $\operatorname{deg}(R(q))=\operatorname{deg}(q)$ whenever $R(q) \neq 0$
and q homsgeneous

[^1]a

Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$
- R is a linear map
- $R(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
- $R(p q)=p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
- $\operatorname{deg}(R(q))=\operatorname{deg}(q)$ whenever $R(q) \neq 0$
- a linear map $R_{G}: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a Reynolds operator if it satisfies the following properties:
(1) $R_{G}(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
(2) R_{G} is G-invariant, that is, $R_{G}(g \circ p)=R_{G}(p)$ for all $p \in \mathbb{C}[\mathrm{x}]$ and all $g \in G$
any Reynolds operetor has these properties

[^2]- •••

Hilbert's Idea

- Let G be our group acting on \mathbb{C}^{N}, and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[x]^{G}$, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$
- R is a linear map
- $R(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
- $R(p q)=p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
- $\operatorname{deg}(R(q))=\operatorname{deg}(q)$ whenever $R(q) \neq 0$
- a linear map $R_{G}: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a Reynolds operator if it satisfies the following properties:
(1) $R_{G}(p)=p$ for all $p \in \mathbb{C}[\mathbf{x}]^{G}$
(2) R_{G} is G-invariant, that is, $R_{G}(g \circ p)=R_{G}(p)$ for all $p \in \mathbb{C}[\mathrm{x}]$ and all $g \in G$
- One can prove (requires representation theory) that the Reynolds operator exists (and is unique) when G is reductive and that it has the properties above. ${ }^{2}$

[^3]Averaging Operator (Reynolds operator in the finite case)

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\begin{align*}
& \rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} \frac{g \circ p}{(1)(2)(3)} \\
& G=S_{3} \quad V=\mathbb{C}^{3} \tag{12}\\
& P\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \\
& \text { (13)(2) } \\
& \text { (2 } 23 \text {) } \\
& \text { (} \left.1 \begin{array}{lll}
1 & 3 & 2
\end{array}\right) \\
& \text { (1) (23) } \\
& \rho(P)=\frac{1}{6}\left(x_{1}+x_{2}+x_{3}+x_{2}+x_{3}+x_{1}\right) \\
& =\frac{1}{3} e_{1}\left(x_{1}, x_{2}, x_{3}\right)
\end{align*}
$$

$$
\begin{array}{r}
\rho(p)=\frac{1}{|G|} \sum_{g \in G} g \circ p \\
\underline{h \circ \rho(p)=} \frac{l}{|G|} \sum_{g \in G} \frac{h \circ(g \circ p)}{(n g) \cdot p}
\end{array}
$$

f: $\begin{aligned} & G \longrightarrow G \text { permutation } \\ & g \mapsto \operatorname{lig}\end{aligned}$

$$
\begin{aligned}
h g_{1}=h g_{2} & \Leftrightarrow g_{1}=g_{2} \\
& =\frac{1}{|G|} \sum_{\nu \in G} \nu \circ p=e(p)
\end{aligned}
$$

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :

$$
\begin{aligned}
& \longrightarrow \mathbb{1} \rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G} \text { is a linear operator } \\
& \longrightarrow \mathbf{2} \rho(p \cdot q)=p \cdot \rho(q) \text { for any } p \in \mathbb{C}[\mathbf{x}]^{G} \text { and } q \in \mathbb{C}[\mathbf{x}] \\
& \longrightarrow \mathbf{3} \operatorname{deg}(\rho(p))=\operatorname{deg}(p) \text { whenever } \rho(p) \neq 0 \\
& \rho(p+q)=\frac{1}{|G|} \sum_{g \in G} \underbrace{g \circ p+p+q)}=\rho(p)+\rho(q)
\end{aligned}
$$

Whenever P
is homogeneov poly nominal non-homageneous $\operatorname{deg}(\rho(p)) \leqq \operatorname{deg}(p)$ I wac

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :
(1) $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a linear operator projection
(2) $\rho(p \cdot q)=p \cdot \rho(q)$ for any $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
(3) $\operatorname{deg}(\rho(p))=\operatorname{deg}(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as \mathbb{C}-algebra to finite generation of ideals!

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :
(1) $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a linear operator projection
(2) $\rho(p \cdot q)=p \cdot \rho(q)$ for any $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
(3) $\operatorname{deg}(\rho(p))=\operatorname{deg}(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as \mathbb{C}-algebra to finite generation of ideals!
- Note that our ring $\mathbb{C}[\mathbf{x}]$ is graded by degree, and so is our ring of invariants!

$$
\mathbb{C}[\bar{x}]=\mathbb{C} \oplus \frac{\mathbb{C}[\bar{x}]_{\perp}}{a x+b y}
$$

$\oplus \mathbb{C}[\bar{x}]_{2} \oplus \cdots$

Averaging Operator

- If G is a finite group acting linearly on $V=\mathbb{C}^{N}$, let $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$

$$
\rho(p)=\frac{1}{|G|} \cdot \sum_{g \in G} g \circ p
$$

- Properties of ρ :
(1) $\rho: \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]^{G}$ is a linear operator projection
(2) $\rho(p \cdot q)=p \cdot \rho(q)$ for any $p \in \mathbb{C}[\mathbf{x}]^{G}$ and $q \in \mathbb{C}[\mathbf{x}]$
(3) $\operatorname{deg}(\rho(p))=\operatorname{deg}(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as \mathbb{C}-algebra to finite generation of ideals!
- Note that our ring $\mathbb{C}[\mathbf{x}]$ is graded by degree, and so is our ring of invariants!
- Plus, note that our invariants can always be taken to be homogeneous polynomials (otherwise we can take homogeneous components).

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\frac{\mathbb{C}[\mathbf{x}]_{0}}{\mathbb{C}} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[x]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[\mathbf{x}]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots
$$

homogeneous non-constont invariant polynomials
$J=$ ideal of $\mathbb{C}[\bar{x}]$ generated by g homogeneous nou-coustant invariants

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[\mathbf{x}]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\longrightarrow \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots
$$

- By Hilbert Basis Theorem (HBT), we know that J is finitely
generated.
for, fo

$$
J=\left(a_{1}, \ldots, a_{t}\right)
$$

Moreover, we can take a_{i} 's to be invariants (from proof of HBT)

$$
f_{i}=\underbrace{b_{i 1}} h_{i 1}+\underbrace{b_{i 2}}_{\text {nil }} h_{i 2}+\cdots+\underbrace{b_{i l}}_{\text {nogenears }} h_{i l e}
$$

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[\mathbf{x}]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots
$$

- By Hilbert Basis Theorem (HBT), we know that J is finitely generated.

$$
J=\left(a_{1}, \ldots, a_{t}\right)
$$

Moreover, we can take a_{i} 's to be invariants (from proof of HBT)

- We can assume a_{i} 's are homogeneous (otherwise take their homogeneous components as generators)

Finite Generation

- Let $\mathbb{C}[\mathbf{x}]=\mathbb{C}[\mathbf{x}]_{0} \oplus \mathbb{C}[\mathbf{x}]_{1} \oplus \mathbb{C}[\mathbf{x}]_{2} \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}[\mathbf{x}]_{0}^{G} \oplus \mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the ideal generated by

$$
\mathbb{C}[\mathbf{x}]_{1}^{G} \oplus \mathbb{C}[\mathbf{x}]_{2}^{G} \oplus \cdots
$$

- By Hilbert Basis Theorem (HBT), we know that J is finitely generated.

$$
J=\left(a_{1}, \ldots, a_{t}\right)
$$

Moreover, we can take a_{i} 's to be invariants (from proof of HBT)

- We can assume a_{i} 's are homogeneous (otherwise take their homogeneous components as generators)
- We will now show that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[x]^{G}$, where we now have $d>0$.

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[\mathrm{x}]^{G}$, where we now have $d>0$.
- If $p \in \mathbb{C}[\mathbf{x}]_{d}^{G}$, since we know that $p \in J$ by definition of J, we have invariant homogeneous of degree d

$$
p=a_{1} \underline{b_{1}+\cdots+a_{t} b_{t}} \rightarrow \in \mathbb{C}[\bar{x}]
$$

a_{i} 's invarisento

$$
\widetilde{C}\left[a_{1}, \ldots, a_{t}\right]
$$

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[\mathrm{x}]^{G}$, where we now have $d>0$.
- If $p \in \mathbb{C}[\mathbf{x}]_{d}^{G}$, since we know that $p \in J$ by definition of J, we have

$$
p=a_{1} b_{1}+\cdots+a_{t} b_{t} \quad \operatorname{deg}\left(a_{i} b_{i}\right)
$$

- Applying the averaging operator on both sides, we have:

$$
=\operatorname{deg}(p)
$$

$\rho\left(b_{i}\right)^{\prime} s$ are invariants!

$$
d=\operatorname{deg}(p)=\operatorname{deg}\left(a_{i} b_{i}\right) \geqslant \operatorname{deg}\left(a_{i}\right)+\operatorname{deg}\left(\rho_{i}\left(b_{i}\right)\right)
$$

Finite Generation

- Proof that $\mathbb{C}[\mathbf{x}]^{G}=\mathbb{C}\left[a_{1}, \ldots, a_{t}\right]$ is by induction on degree.
- Claim is true for $d=0$ (base case). Suppose claim is true for all polynomials of degree $<d$ in $\mathbb{C}[x]^{G}$, where we now have $d>0$.
- If $p \in \mathbb{C}[\mathbf{x}]_{d}^{G}$, since we know that $p \in J$ by definition of J, we have

$$
p=a_{1} b_{1}+\cdots+a_{t} b_{t}
$$

- Applying the averaging operator on both sides, we have:

$$
\begin{aligned}
p=\rho(p) & =\rho\left(a_{1} b_{1}+\cdots+a_{t} b_{t}\right) \\
& =\rho\left(a_{1} b_{1}\right)+\cdots+\rho\left(a_{t} b_{t}\right) \\
& =a_{1} \cdot \rho\left(b_{1}\right)+\cdots+a_{t} \cdot \rho\left(b_{t}\right)
\end{aligned}
$$

- By induction, and the fact that $\operatorname{deg}\left(\rho\left(b_{i}\right)\right)<d$, we have that

$$
P=\frac{\in \mathbb{C}\left[a_{1}, \ldots, a_{t}\right] p \in \mathbb{C}\left[a_{1}, \ldots, a_{t}\right]}{a_{1} \rho^{\left(b_{1}\right)+\cdots+a_{t} \rho\left(b_{t}\right)}}
$$

$$
\rho\left(b_{i}\right) \in \mathbb{C}\left[a_{1}, \ldots, a_{t}\right]
$$

This concludes the proof.

[^0]: ${ }^{2}$ For a proof of this, see Derksen \& Kemper Chapter 2

[^1]: ${ }^{2}$ For a proof of this, see Derksen \& Kemper Chapter 2 ㅁ

[^2]: ${ }^{2}$ For a proof of this, see Derksen \& Kemper Chapter 2

[^3]: ${ }^{2}$ For a proof of this, see Derksen \& Kemper Chapter 2

