
Lecture 16: Reynolds Operator & Finite Generation of
Invariant Rings

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

March 10, 2021

1 / 59

(copyright Rafael Oliveira)



Finite Generation Problem

Let G be a nice1 group and V be a C-vector space
G acts linearly on V if

g � (�u + ⇥v) = �(g � u) + ⇥(g � v)

Examples:
1 G = Sn, V = Cn permuting coordinates
2 G = SL(2), V = Cd+1 linear transformations of curves

1Today: finite groups and SL(n). More generally linearly reductive
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Finite Generation Problem

Let G be a nice1 group and V be a C-vector space
G acts linearly on V if

g � (�u + ⇥v) = �(g � u) + ⇥(g � v)

Examples:
1 G = Sn, V = Cn permuting coordinates
2 G = SL(2), V = Cd+1 linear transformations of curves

Invariant polynomials form a subring of C[V ], denoted C[V ]G

Question from last lecture:

Given a nice group G acting linearly on a vector space V , is C[V ]G

finitely generated as a C-algebra?
Last lecture, we saw this was the case for first example. Is this a
general phenomenon?

Hilbert (twice) 1890, 1893: YES!
1Today: finite groups and SL(n). More generally linearly reductive
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Ring of Invariant Polynomials

G acts linearly on V = CN , let C[x] = C[x1, . . . , xN ] be the
polynomial ring over V
Invariant polynomials form a subring of C[x], denoted C[x]G
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Ring of Invariant Polynomials

G acts linearly on V = CN , let C[x] = C[x1, . . . , xN ] be the
polynomial ring over V
Invariant polynomials form a subring of C[x], denoted C[x]G

For the ring of symmetric polynomials, we know that

C[x1, . . . , xn]Sn = C[e1, e2, . . . , en]

where
ed(x1, . . . , xn) =

�

S�[n]
|S |=d

⇥

i⇥S
xi

Every symmetric polynomial is itself a polynomial function of the
elementary symmetric polynomials

Elementary symmetric polynomials are a fundamental system of

invariants
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Proof of Invariant Ring of Symmetric Polynomials

Proof due to van der Waerden using monomial ordering!

Use degree lexicographic order

Every symmetric polynomial p(x) has a non-zero leading term

x
a1
1 x

a2
2 · · · xann

with a1 ⇥ a2 ⇥ · · · ⇥ an

Then
p(x)⇤ LC (p) · ea1⇤a2

1 · ea2⇤a3
2 · · · ean�1⇤an

n⇤1 · eann
has smaller leading monomial! division algorithm!

Procedure must terminate because of well-ordering of monomial
ordering!
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Proof of Invariant Ring of Symmetric Polynomials

Proof due to van der Waerden using monomial ordering!

Use degree lexicographic order

Every symmetric polynomial p(x) has a non-zero leading term

x
a1
1 x

a2
2 · · · xann

with a1 ⇥ a2 ⇥ · · · ⇥ an

Then
p(x)⇤ LC (p) · ea1⇤a2

1 · ea2⇤a3
2 · · · ean�1⇤an

n⇤1 · eann
has smaller leading monomial! division algorithm!

Procedure must terminate because of well-ordering of monomial
ordering!

Can we generalize this to work for every finite group?
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Hilbert’s Idea
Let G be our group acting on CN , and C[x] our coordinate ring.
If we had a procedure which projected any polynomial from C[x] onto
the ring of invariants C[x]G , we could try to do something similar to
Hilbert Basis Theorem!

2For a proof of this, see Derksen & Kemper Chapter 2
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R is a linear map
R(p) = p for all p ⇧ C[x]G
R(pq) = p · R(q) for each p ⇧ C[x]G and q ⇧ C[x]
deg(R(q)) = deg(q) whenever R(q) ⌃= 0

a linear map RG : C[x] ⌅ C[x]G is a Reynolds operator if it satisfies
the following properties:

1 RG (p) = p for all p ⇧ C[x]G
2 RG is G -invariant, that is, RG (g � p) = RG (p) for all p ⇧ C[x] and all
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Hilbert’s Idea
Let G be our group acting on CN , and C[x] our coordinate ring.
If we had a procedure which projected any polynomial from C[x] onto
the ring of invariants C[x]G , we could try to do something similar to
Hilbert Basis Theorem!
Here are the properties we need from such map R : C[x] ⌅ C[x]G

R is a linear map
R(p) = p for all p ⇧ C[x]G
R(pq) = p · R(q) for each p ⇧ C[x]G and q ⇧ C[x]
deg(R(q)) = deg(q) whenever R(q) ⌃= 0

a linear map RG : C[x] ⌅ C[x]G is a Reynolds operator if it satisfies
the following properties:

1 RG (p) = p for all p ⇧ C[x]G
2 RG is G -invariant, that is, RG (g � p) = RG (p) for all p ⇧ C[x] and all

g ⇧ G

One can prove (requires representation theory) that the Reynolds
operator exists (and is unique) when G is reductive and that it has
the properties above.2

2For a proof of this, see Derksen & Kemper Chapter 2
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Averaging Operator

If G is a finite group acting linearly on V = CN , let ⇤ : C[x] ⌅ C[x]G

⇤(p) =
1

|G | ·
�

g⇥G
g � p
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(Reynolds operator in the finite case)
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If G is a finite group acting linearly on V = CN , let ⇤ : C[x] ⌅ C[x]G

⇤(p) =
1

|G | ·
�

g⇥G
g � p

Properties of ⇤:
1 ⇤ : C[x] ⌅ C[x]G is a linear operator projection
2 ⇤(p · q) = p · ⇤(q) for any p ⇧ C[x]G and q ⇧ C[x]
3 deg(⇤(p)) = deg(p) whenever ⇤(p) ⌃= 0

12 / 59



Averaging Operator

If G is a finite group acting linearly on V = CN , let ⇤ : C[x] ⌅ C[x]G

⇤(p) =
1

|G | ·
�

g⇥G
g � p

Properties of ⇤:
1 ⇤ : C[x] ⌅ C[x]G is a linear operator projection
2 ⇤(p · q) = p · ⇤(q) for any p ⇧ C[x]G and q ⇧ C[x]
3 deg(⇤(p)) = deg(p) whenever ⇤(p) ⌃= 0

Now, we can use ⇤ to reduce finite generation as C-algebra to finite
generation of ideals!

13 / 59



Averaging Operator

If G is a finite group acting linearly on V = CN , let ⇤ : C[x] ⌅ C[x]G
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Averaging Operator

If G is a finite group acting linearly on V = CN , let ⇤ : C[x] ⌅ C[x]G

⇤(p) =
1

|G | ·
�

g⇥G
g � p

Properties of ⇤:
1 ⇤ : C[x] ⌅ C[x]G is a linear operator projection
2 ⇤(p · q) = p · ⇤(q) for any p ⇧ C[x]G and q ⇧ C[x]
3 deg(⇤(p)) = deg(p) whenever ⇤(p) ⌃= 0

Now, we can use ⇤ to reduce finite generation as C-algebra to finite
generation of ideals!

Note that our ring C[x] is graded by degree, and so is our ring of
invariants!

Plus, note that our invariants can always be taken to be homogeneous
polynomials (otherwise we can take homogeneous components).
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Finite Generation

Let C[x] = C[x]0 ⌥ C[x]1 ⌥ C[x]2 ⌥ · · · be grading by degree
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By Hilbert Basis Theorem (HBT), we know that J is finitely
generated.

J = (a1, . . . , at)

Moreover, we can take ai ’s to be invariants (from proof of HBT)
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Finite Generation

Let C[x] = C[x]0 ⌥ C[x]1 ⌥ C[x]2 ⌥ · · · be grading by degree

Similarly C[x]G = C[x]G0 ⌥ C[x]G1 ⌥ C[x]G2 ⌥ · · ·
Let J � C[x] be the ideal generated by

C[x]G1 ⌥ C[x]G2 ⌥ · · ·

By Hilbert Basis Theorem (HBT), we know that J is finitely
generated.

J = (a1, . . . , at)

Moreover, we can take ai ’s to be invariants (from proof of HBT)

We can assume ai ’s are homogeneous (otherwise take their
homogeneous components as generators)

We will now show that C[x]G = C[a1, . . . , at ]
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Finite Generation

Proof that C[x]G = C[a1, . . . , at ] is by induction on degree.
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Finite Generation

Proof that C[x]G = C[a1, . . . , at ] is by induction on degree.

Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]G , where we now have d > 0.
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Finite Generation

Proof that C[x]G = C[a1, . . . , at ] is by induction on degree.

Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]G , where we now have d > 0.

If p ⇧ C[x]Gd , since we know that p ⇧ J by definition of J, we have

p = a1b1 + · · ·+ atbt
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Finite Generation

Proof that C[x]G = C[a1, . . . , at ] is by induction on degree.

Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]G , where we now have d > 0.

If p ⇧ C[x]Gd , since we know that p ⇧ J by definition of J, we have

p = a1b1 + · · ·+ atbt

Applying the averaging operator on both sides, we have:

p = ⇤(p) = ⇤(a1b1 + · · ·+ atbt)

= ⇤(a1b1) + · · ·+ ⇤(atbt)

= a1 · ⇤(b1) + · · ·+ at · ⇤(bt)
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Finite Generation

Proof that C[x]G = C[a1, . . . , at ] is by induction on degree.

Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]G , where we now have d > 0.

If p ⇧ C[x]Gd , since we know that p ⇧ J by definition of J, we have

p = a1b1 + · · ·+ atbt

Applying the averaging operator on both sides, we have:

p = ⇤(p) = ⇤(a1b1 + · · ·+ atbt)

= ⇤(a1b1) + · · ·+ ⇤(atbt)

= a1 · ⇤(b1) + · · ·+ at · ⇤(bt)

By induction, and the fact that deg(⇤(bi )) < d , we have that

p ⇧ C[a1, . . . , at ]
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This concludes the proof. 


