Reynolds Operator & Finite Generation of Invariant Rings

(copyright Rafael Oliveira)

Finite Generation Problem

- Let G be a nice¹ group and V be a \mathbb{C} -vector space
- G acts *linearly* on V if

$$g \circ (\alpha u + \beta v) = \alpha (g \circ u) + \beta (g \circ v)$$

• Examples:

1
$$G = S_n, V = \mathbb{C}^n$$

2 $G = \mathbb{SL}(2), V = \mathbb{C}^{d+1}$

permuting coordinates linear transformations of curves

$V = C^N$ and Finite Generation Problem

- Let G be a nice¹ group and V be a \mathbb{C} -vector space (X, ..., XN)
- G acts *linearly* on V if

$$g \circ (\alpha u + \beta v) = \alpha (g \circ u) + \beta (g \circ v)$$

- Examples:
 - permuting coordinates 2 $G = \mathbb{SL}(2), V = \mathbb{C}^{d+1}$ linear transformations of curves
- Invariant polynomials form a *subring* of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^G$
- Question

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^G$ *finitely generated* as a C-algebra?

 $\mathbb{C}[\{1,\dots,n_t\}] = \mathbb{C}[V]^G$

¹Today: finite groups and SL(n). More generally *linearly*-reductive $a \rightarrow a = a$ **NO**

Finite Generation Problem

- Let G be a nice¹ group and V be a \mathbb{C} -vector space
- G acts *linearly* on V if

$$g \circ (\alpha u + \beta v) = \alpha (g \circ u) + \beta (g \circ v)$$

• Examples:

Image: G = S_n, V = \mathbb{C}^n permuting coordinatesImage: G = SL(2), V = \mathbb{C}^{d+1} linear transformations of curves

- Invariant polynomials form a *subring* of $\mathbb{C}[V]$, denoted $\mathbb{C}[V]^G$
- Question

Given a nice group G acting linearly on a vector space V, is $\mathbb{C}[V]^G$ finitely generated as a \mathbb{C} -algebra?

- Last lecture, we saw this was the case for first example. Is this a general phenomenon? $G = G \cup (3)$ V = (1)
- Hilbert (twice) 1890, 1893: YES!

¹Today: finite groups and SL(n). More generally *linearly*-reductive $a \to a \to a \to a \to a$

Ring of Invariant Polynomials

- G acts linearly on V = C^N, let C[x] = C[x₁,...,x_N] be the polynomial ring over V
- Invariant polynomials form a *subring* of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^G$

Ring of Invariant Polynomials

- G acts linearly on V = C^N, let C[x] = C[x₁,...,x_N] be the polynomial ring over V
- Invariant polynomials form a *subring* of $\mathbb{C}[\mathbf{x}]$, denoted $\mathbb{C}[\mathbf{x}]^G$
- For the ring of symmetric polynomials, we know that

$$\mathbb{C}[x_1,\ldots,x_n]^{S_n}=\mathbb{C}[e_1,e_2,\ldots,e_n]$$

where

$$e_d(x_1,\ldots,x_n) = \sum_{\substack{S \subset [n] \ i \in S}} \prod_{i \in S} x_i$$

- Every symmetric polynomial is itself a <u>polynomial function</u> of the elementary symmetric polynomials
- Elementary symmetric polynomials are a *fundamental system of invariants*

Proof of Invariant Ring of Symmetric Polynomials

(optional material)

• Proof due to van der Waerden

using monomial ordering!

- Use degree lexicographic order
- Every symmetric polynomial p(x) has a non-zero leading term

$$p(x) - LC(p) \cdot e_1^{a_1 - a_2} \cdot e_2^{a_2 - a_3} \cdots e_{n-1}^{a_{n-1} - a_n} \cdot e_n^{a_n}$$

has *smaller* leading monomial! division algorithm! Procedure must terminate because of well-ordering of monomial ordering!

Proof of Invariant Ring of Symmetric Polynomials

(optional material)

• Proof due to van der Waerden

using monomial ordering!

- Use degree lexicographic order
- Every symmetric polynomial p(x) has a non-zero leading term

$$x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$$

with $a_1 \geq a_2 \geq \cdots \geq a_n$

• Then

$$p(x) - LC(p) \cdot e_1^{a_1-a_2} \cdot e_2^{a_2-a_3} \cdots e_{n-1}^{a_{n-1}-a_n} \cdot e_n^{a_n}$$

has *smaller* leading monomial!

division algorithm!

- Procedure must terminate because of well-ordering of monomial ordering!
- Can we generalize this to work for every finite group?

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which <u>projected</u> any polynomial from C[x] onto the ring of invariants C[x]^G, we could try to do something similar to Hilbert Basis Theorem!

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which <u>projected</u> any polynomial from C[x] onto the ring of invariants C[x]^G, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$
 - *R* is a linear map
 - R(p) = p for all $p \in \mathbb{C}[\mathbf{x}]^G$
 - $R(pq) = p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^G$ and $q \in \mathbb{C}[\mathbf{x}]$
 - $\deg(R(q)) = \deg(q)$ whenever $R(q) \neq 0$ and q homogeneous

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which projected any polynomial from $\mathbb{C}[\mathbf{x}]$ onto the ring of invariants $\mathbb{C}[\mathbf{x}]^G$, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$
 - R is a linear map

•
$$R(p) = p$$
 for all $p \in \mathbb{C}[\mathbf{x}]^G$

•
$$R(pq) = p \cdot R(q)$$
 for each $p \in \mathbb{C}[\mathbf{x}]^G$ and $q \in \mathbb{C}[\mathbf{x}]$

•
$$\deg(R(q)) = \deg(q)$$
 whenever $R(q) \neq 0$

• a linear map $R_G : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$ is a *Reynolds operator* if it satisfies the following properties:

1
$$R_G(p) = p$$
 for all $p \in \mathbb{C}[\mathbf{x}]^G$

2 R_G is G-invariant, that is, $R_G(g \circ p) = R_G(p)$ for all $p \in \mathbb{C}[\mathbf{x}]$ and all $g \in G$

any Reynolds operator has these projections

- Let G be our group acting on \mathbb{C}^N , and $\mathbb{C}[\mathbf{x}]$ our coordinate ring.
- If we had a procedure which <u>projected</u> any polynomial from C[x] onto the ring of invariants C[x]^G, we could try to do something similar to Hilbert Basis Theorem!
- Here are the properties we need from such map $R : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$
 - *R* is a linear map
 - R(p) = p for all $p \in \mathbb{C}[\mathbf{x}]^G$
 - $R(pq) = p \cdot R(q)$ for each $p \in \mathbb{C}[\mathbf{x}]^G$ and $q \in \mathbb{C}[\mathbf{x}]$
 - $\deg(R(q)) = \deg(q)$ whenever $R(q) \neq 0$
- a linear map $R_G : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$ is a *Reynolds operator* if it satisfies the following properties:
 - $R_G(p) = p$ for all $p \in \mathbb{C}[\mathbf{x}]^G$
 - 2 R_G is G-invariant, that is, $R_G(g \circ p) = R_G(p)$ for all $p \in \mathbb{C}[\mathbf{x}]$ and all $g \in G$
- One can prove (requires representation theory) that the Reynolds operator exists (and is unique) when G is reductive and that it has the properties above.²

Averaging Operator (Reynolds operator in the finite case)

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} \frac{g \circ p}{(i)(i)(i)(3)}$$

$$G = S_3 \qquad \bigvee = \mathbb{C}^3 \qquad \begin{array}{c} (f \ z)(3) \\ (i \ 3)(2) \\ (i \ 3)(2) \\ (i \ 3 \ 2) \\ (i \ 3 \ 2) \\ (i)(23) \end{array}$$

$$\begin{aligned}
 \rho(p) &= \frac{1}{6} \left(\chi_{1} + \chi_{2} + \chi_{3} + \chi_{2} + \chi_{3} + \chi_{4} \right) \\
 &= \frac{1}{6} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} + \chi_{3} \right) \\
 &= \frac{1}{3} \left(\chi_{1} + \chi_{2} +$$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

• Properties of
$$\rho$$
:
• $\mathfrak{O} \ \rho : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$ is a linear operator
• $\mathfrak{O} \ \rho : \mathfrak{O}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$ is a linear operator
• $\mathfrak{O} \ \rho : \mathfrak{O}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]^G$ and $\underline{q} \in \mathbb{C}[\mathbf{x}]$
• $\mathfrak{O} \ (p \cdot q) = p \cdot \rho(q)$ for any $\underline{p} \in \mathbb{C}[\mathbf{x}]^G$ and $\underline{q} \in \mathbb{C}[\mathbf{x}]$
• $\mathfrak{O} \ (p + q) = \mathfrak{O}(p) \ \mathfrak{O}(p + q) = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ (p + q) = \mathfrak{O}(p) + \mathfrak{O}(q) = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} \ \mathfrak{O} = \mathfrak{O}(p) + \mathfrak{O}(q)$
• $\mathfrak{O} \ \mathfrak{O} \ \mathfrak{O}$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

- Properties of ρ :
 - ρ: ℂ[x] → ℂ[x]^G is a linear operator

 ρ(p ⋅ q) = p ⋅ ρ(q) for any p ∈ ℂ[x]^G and q ∈ ℂ[x]

 deg(ρ(p)) = deg(p) whenever ρ(p) ≠ 0
- Now, we can use ρ to reduce finite generation as C-algebra to finite generation of ideals!

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

- Properties of ρ :
 - ρ : ℂ[x] → ℂ[x]^G is a linear operator

 ρ(p ⋅ q) = p ⋅ ρ(q) for any p ∈ ℂ[x]^G and q ∈ ℂ[x]
 - 3 $\deg(\rho(p)) = \deg(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as $\mathbb{C}\text{-algebra}$ to finite generation of ideals!
- Note that our ring C[x] is graded by degree, and so is our ring of invariants!

$$\mathbb{C}[\overline{x}] = \mathbb{C} \oplus \mathbb{C}[\overline{x}]_{L} \oplus \mathbb{C}[\overline{x}]_{2} \oplus \cdots$$

$$a_{x+by} \qquad a_{x+by} + c_{y}^{2} \oplus \cdots$$

$$\rho(p) = \frac{1}{|G|} \cdot \sum_{g \in G} g \circ p$$

- Properties of ρ :
 - ρ : ℂ[x] → ℂ[x]^G is a linear operator

 ρ(p ⋅ q) = p ⋅ ρ(q) for any p ∈ ℂ[x]^G and q ∈ ℂ[x]
 - 3 $\deg(\rho(p)) = \deg(p)$ whenever $\rho(p) \neq 0$
- Now, we can use ρ to reduce finite generation as \mathbb{C} -algebra to finite generation of ideals!
- Note that our ring $\mathbb{C}[\mathbf{x}]$ is graded by degree, and so is our ring of invariants!
- Plus, note that our invariants can always be taken to be homogeneous polynomials (otherwise we can take homogeneous components).

• Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree

<ロ> <書> < 注> < 注> < 注> < 注</p>

- Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[\mathbf{x}]^G_0 \oplus \mathbb{C}[\mathbf{x}]^G_1 \oplus \mathbb{C}[\mathbf{x}]^G_2 \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

 $\mathbb{C}[\mathbf{x}]_1^G \oplus \mathbb{C}[\mathbf{x}]_2^G \oplus \cdots$ homorgeneous non-constant invariant polynomials J=ideal of ([x]) generated 64 hoursgeneous non-constant invariants

<ロ> <昌> < 注> < 注> < 注</p>

- Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[\mathbf{x}]^G_0 \oplus \mathbb{C}[\mathbf{x}]^G_1 \oplus \mathbb{C}[\mathbf{x}]^G_2 \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

$$\longrightarrow \mathbb{C}[\mathbf{x}]_1^G \oplus \mathbb{C}[\mathbf{x}]_2^G \oplus \cdots$$

By Hilbert Basis Theorem (HBT), we know that J is finitely generated.
 J = (a₁, ..., a_t)

Moreover, we can take a_i 's to be invariants (from proof of HBT)

- Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[\mathbf{x}]^G_0 \oplus \mathbb{C}[\mathbf{x}]^G_1 \oplus \mathbb{C}[\mathbf{x}]^G_2 \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

 $\mathbb{C}[\mathbf{x}]_1^G \oplus \mathbb{C}[\mathbf{x}]_2^G \oplus \cdots$

• By Hilbert Basis Theorem (HBT), we know that J is finitely generated.

$$J=(a_1,\ldots,a_t)$$

Moreover, we can take a_i 's to be invariants (from proof of HBT)

• We can assume a_i 's are homogeneous (otherwise take their homogeneous components as generators)

- Let $\mathbb{C}[\mathbf{x}] = \mathbb{C}[\mathbf{x}]_0 \oplus \mathbb{C}[\mathbf{x}]_1 \oplus \mathbb{C}[\mathbf{x}]_2 \oplus \cdots$ be grading by degree
- Similarly $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[\mathbf{x}]^G_0 \oplus \mathbb{C}[\mathbf{x}]^G_1 \oplus \mathbb{C}[\mathbf{x}]^G_2 \oplus \cdots$
- Let $J \subset \mathbb{C}[\mathbf{x}]$ be the *ideal* generated by

$$\mathbb{C}[\mathbf{x}]_1^{\mathcal{G}} \oplus \mathbb{C}[\mathbf{x}]_2^{\mathcal{G}} \oplus \cdots$$

• By Hilbert Basis Theorem (HBT), we know that J is finitely generated.

$$J=(a_1,\ldots,a_t)$$

Moreover, we can take a_i 's to be invariants (from proof of HBT)

- We can assume a_i's are homogeneous (otherwise take their homogeneous components as generators)
- We will now show that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \dots, a_t]$

• Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \ldots, a_t]$ is by induction on degree.

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \ldots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in C[x]^G, where we now have d > 0.

hay

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \ldots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in $\mathbb{C}[\mathbf{x}]^G$, where we now have d > 0.
- If $p \in \mathbb{C}[\mathbf{x}]_d^G$, since we know that $p \in J$ by definition of J, we have

invariant
$$p = a_1 b_1 + \dots + a_t b_t$$
 $\in \mathbb{C}[x]$
someone and a_i 's invariants
 $\mathbb{C}[a_{i_1}, \dots, a_t]$

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \ldots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in C[x]^G, where we now have d > 0.
- If $p \in \mathbb{C}[\mathbf{x}]_d^G$, since we know that $p \in J$ by definition of J, we have

. .

$$p = a_1b_1 + \dots + a_tb_t$$

$$deg(a(bi)) = deg(a(bi)) = de$$

- Proof that $\mathbb{C}[\mathbf{x}]^G = \mathbb{C}[a_1, \ldots, a_t]$ is by induction on degree.
- Claim is true for d = 0 (base case). Suppose claim is true for all polynomials of degree < d in C[x]^G, where we now have d > 0.
- If $p \in \mathbb{C}[\mathbf{x}]_d^G$, since we know that $p \in J$ by definition of J, we have

$$p = a_1 b_1 + \cdots + a_t b_t$$

• Applying the averaging operator on both sides, we have:

$$p = \rho(p) = \rho(a_1b_1 + \dots + a_tb_t)$$

= $\rho(a_1b_1) + \dots + \rho(a_tb_t)$
= $a_1 \cdot \rho(b_1) + \dots + a_t \cdot \rho(b_t)$
by induction, and the fact that $deg(\rho(b_i)) < d$, we have that
 $e \in \mathbb{C}[a_1, \dots, a_t]$
 $p \in \mathbb{C}[a_1, \dots, a_t]$
 $p \in \mathbb{C}[a_1, \dots, a_t]$
This concludes the proof.