Universität Wien
Prof. B. Szendrői

Commutative algebra and algebraic geometry
 - Exercise Sheet 3 with extended hints -

WS 2023

All rings R are commutative and unital. The symbol k denotes an algebraically closed field. There are some hints at the end of the problem sheet.

Exercise 1. Describe carefully all Zariski closed subsets of the affine plane \mathbb{A}_{k}^{2}. Be sure to prove all statements you use. Which of these subsets are irreducible?

Exercise 2. Deduce from the result of the previous exercise that the Zariski topology on \mathbb{A}_{k}^{2} does not agree with the product topology of $\mathbb{A}_{k}^{1} \times \mathbb{A}_{k}^{1}$ with the Zariski topology on each factor.

Exercise 3. Describe the irreducible components of $V\left(J_{i}\right) \subset \mathbb{A}_{k}^{3}$, for each of the following ideals $J_{i} \triangleleft k[x, y, z]$.
(1) $J_{1}=(x y, x z)$.
(2) $J_{2}=\left(y^{2}-x^{4}, x^{2}-2 x^{3}-x^{2} y+2 x y+x^{2}-y^{2}\right)$.
(3) $J_{3}=(x y+y z+x z, x y z)$.
(4) $J_{4}=\left((x-z)(x-y)(x-2 z), x^{2}-y^{2} z\right)$.

Is each of the ideals J_{i} reduced? If not, find an element of $\sqrt{J_{i}} \backslash J_{i}$.
Exercise 4. A chain of prime ideals in a ring R of length m is a nontrivial chain

$$
J_{0} \subsetneq J_{1} \subsetneq \ldots \subsetneq J_{m}
$$

of ideals, with each $J_{i} \triangleleft_{p} R$ prime. (Note the indexing.)
(1) Find a chain of prime ideals of length n for the ring $R=k\left[x_{1}, \ldots, x_{n}\right]$.
(2) For $n \leq 2$, show that any chain of prime ideals of $R=k\left[x_{1}, \ldots, x_{n}\right]$ has length at most n.

Exercise 5. Let $R=k[x, y, z] /(x y, x z)$ be the ring corresponding to the ideal J_{1} of Exercise 3. Find maximal (non-extendable) chains of prime ideals of R of different lengths.

Hint for Exercise 1. Any closed set is a finite union of irreducibles. Consider a closed irreducible subset $X=V(I)$ for a radical, prime ideal I. Take an element $f \in I$ of smallest degree, then by prime-ness of I, f must also be irreducible. If $I=(f)$, then $X=V_{f}$, a hypersurface. Otherwise, there is a $g \in I \backslash(f)$, a polynomial that is not a multiple of f, so relatively prime to f. Then, by Gauss' lemma in the ring $k[x][y]$, we can find a linear combination $a f+b g \in I$ which is purely a polynomial in x. By irreducibility, this polynomial must be linear. Similarly, I contains a linear polynomial in y. Hence I is the (maximal) ideal of a point in the plane. So non-trivial irreducible closed subsets of the affine plane are hypersurfaces defined by principal ideals, and points.

Hint for Exercise 2. In the Zariski topology of \mathbb{A}_{k}^{1}, the only nontrivial closed subsets are points. So in the product topology of Zariski $\mathbb{A}_{k}^{1} \times \mathbb{A}_{k}^{1}$, the only closed subsets are unions of vertical and horizontal lines, and finite point sets. This clearly does not agree with the list of closed subsets of \mathbb{A}_{k}^{2}, for example the diagonal line $V(y-x)$ is not of this form.

Hint for Exercise 3. Instead of thinking about the ideals J_{i} directly, we can think of each $V\left(J_{i}\right)$ as the solution set to a set of equations, and solve the equations.
(1) $V\left(J_{1}\right)=V(x) \cup V(y, z)$, the union of the (y, z)-plane and the x-axis.
(2) $V\left(J_{2}\right)=V(x, y) \cup V(x-1, y-1) \cup V(x+1, y-1) \cup V(2 x-1,4 y+1)$, the union of four lines.
(3) $V\left(J_{3}\right)=V(x, y) \cup V(y, z) \cup V(z, x)$, the union of the three coordinate axes.
(4) $V\left(J_{4}\right)=V(z, x) \cup V(z-1, x-y) \cup(y, x) \cup\left(x-2 z, y^{2}-4 z\right) \cup\left(x-z, y^{2}-z\right)$, a union of three lines and two planar parabolas.

Hint for Exercise 4. (1) We can take $(0) \subset\left(x_{1}\right) \subset\left(x_{1}, x_{2}\right) \subset \ldots \subset\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, corresponding to the chain of irreducible varieties given by n-space containing hyperplane containing etc etc containing line containing point. (2) For the affine line, this is easy as $k[x]$ is a PID, and its its nontrivial prime ideals correspond to points. For the affine plane, this was basically explained in the argument of Exercise 1 above: the only possible chains of irreducibles in the plane are plane containing irreducible hypersurface containing point.

Hint for Exercise 5. (Chains of) prime ideals of R / J_{1} correspond to (chains of) prime ideals of R containing J_{1}. Thus at the "bottom" of every relevant chain lies a minimal prime of R, corresponding to an irreducible component of $V\left(J_{1}\right)$. One component $V(y, z)$ is a line, so the only possible chain is $(y, z) \subset(x-\alpha, y, z)$, corresponding to (x-axis) containing the point $(\alpha, 0,0)$. The other component $V(x)$ is a plane, so there are length-two chains possible, for example $(x) \subset(x, y-\beta) \subset(x, y-\beta, z-\gamma)$ corresponding to (y, z)-plane containing line containing point $(0, \beta, \gamma)$.

