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All rings R are commutative and unital. The symbol k denotes a field.

Exercise 1. Let R be a domain. Prove that R[x] is also a domain. Describe its field of
fractions.

Exercise 2. Let R be a ring.

(1) Prove that if r ∈ R is nilpotent, then 1−a ∈ U(R), where U(R) denotes the group
of units of R. Is the converse also true?

(2) Prove that if r1 ∈ R is idempotent (meaning r21 = r1), then r2 = 1 − r1 is also
idempotent, and orthogonal to r1 in the sense that r1r2 = 0. Prove that R as an
R-module decomposes as a direct sum of two R-submodules r1R, r2R.

Exercise 3. Let S be a subring of the ring Q of rational numbers.

(1) Let p be a prime number dividing a denominator n for an element r = m/n ∈ S
with (m,n) relatively prime integers. Prove that 1/p ∈ S.

(2) Deduce that S is the subset of Q defined by the condition that all prime factors
of the denominator n of an element r = m/n ∈ S with (m,n) relatively prime
integers must belong to a fixed set of primes P .

Thus subrings of Q are classified by subsets of the set of all prime numbers.

Exercise 4. Prove that the ring Z[i] is a Euclidean domain (hence PID and UFD). Find
the set of irreducibles of Z[i].

Exercise 5. Prove that the following rings are not principal ideal domains:
Z[x],Z[

√
−5], k[x, y].

Exercise 6. Prove that the following rings are not Noetherian.

(1) The subring R ⊂ k[x, y] of polynomials of the form f(x, y) = a + yg(x, y), with
a ∈ k.

(2) The ring1 of algebraic integers, consisting of all complex numbers that are roots
of a monic polynomial equation over Z.

1Extra exercise: prove that this set forms a ring.



Exercise 7. (Optional, challenging exercise) Let Int(Z) be the subring of Q[x] consisting
of polynomials that take integer values on all integers.

(1) Show that for all natural numbers n ≥ 0, the polynomial(
x

n

)
=

x(x− 1) · · · (x− n + 1)

n!

is in Int(Z). So Int(Z) is strictly larger than its obvious subring Z[x].
(2) Show that the polynomials {

(
x
n

)
: n ∈ N} form a Z-basis for the Z-module Int(Z).

(3) Show that the ring Int(Z) is not Noetherian.

For more details on the amazing properties of this ring, see What are Rings of Integer-
Valued Polynomials? by Michael Steward.

Hint for Exercise 1. Consider the field R(x) of rational functions in one variable: the field of fractions
f(x)/g(x) where f, g ∈ R[x] are polynomials, g not (idenfically) zero, and we are allowed to simplify by
common factors.

Hint for Exercise 2. (1) Use 1/(1 − a) = 1 + a + a2 + . . .. For the converse, take a nontrivial unit
in R = Z. (2) Straightforward computation. For the last part, x = r1x + r2x, whereas uniqueness of
decomposition comes from orthogonality and idempotence of the ri.

Hint for Exercise 3. (1) Use Bezout’s lemma: since m,n are relatively prime, there exist integers a, b
such that ma+nb = 1. So 1/n = b+(m/n)a ∈ S and so 1/p ∈ S. (2) Let P be the set of primes appearing
as a factor of a reduced denominator of an element m/n ∈ S. By (1), for p ∈ P, 1/p ∈ S. Now it’s easy
to see that S must be the ring described.

Hint for Exercise 4. For (1), the norm is simply absolute value |a+ib| = a2+b2. A geometric argument
shows that there is division with remainder with smaller norm. For (2), use the fact that a prime number
p that is congruent to 1 modulo 4 can always be written as a sum of two integer squares, for example
5 = 12 + 22, 13 = 22 + 32. (Lagrange’s theorem, taught in number theory classes.)

Hint for Exercise 6. (1) Consider the ideal (y, xy, xy2, . . .) of R. (2) This will follow from material in
the section on integral extensions; alternatively, use the theory of symmetric functions.

Hint for Exercise 7. (1) For x ≥ 0 integer,
(
x
n

)
is the answer to a combinatorial question and thus a

(non-negative) integer. For x < 0, re-write the product in the numerator as a sign times a product of non-
negative integer terms to see that the whole expression is a sign times a (positive) binomial coefficient.
(2) Prove first that {

(
x
n

)
: n ∈ N} forms a linearly independent set over Z and also Q, and that it forms

a Q-basis of Q[x]. Now if f ∈ Int(Z), we can definitely write

f(x) =

n∑
k=0

ak

(
x

k

)
with ak ∈ Q. We need ak ∈ Z. Substitute x = 0. Proceed by induction. For (3), consider the ideal
I C Int(Z) generated by the elements

(
x
pi

)
, for pi the i-th prime.


