Commutative algebra and algebraic geometry - Exercise Sheet 1 with hints -

WS 2023

All rings R are commutative and unital. The symbol k denotes a field.

Exercise 1. Let R be a domain. Prove that $R[x]$ is also a domain. Describe its field of fractions.

Exercise 2. Let R be a ring.
(1) Prove that if $r \in R$ is nilpotent, then $1-a \in U(R)$, where $U(R)$ denotes the group of units of R. Is the converse also true?
(2) Prove that if $r_{1} \in R$ is idempotent (meaning $r_{1}^{2}=r_{1}$), then $r_{2}=1-r_{1}$ is also idempotent, and orthogonal to r_{1} in the sense that $r_{1} r_{2}=0$. Prove that R as an R-module decomposes as a direct sum of two R-submodules $r_{1} R, r_{2} R$.

Exercise 3. Let S be a subring of the ring \mathbb{Q} of rational numbers.
(1) Let p be a prime number dividing a denominator n for an element $r=m / n \in S$ with (m, n) relatively prime integers. Prove that $1 / p \in S$.
(2) Deduce that S is the subset of \mathbb{Q} defined by the condition that all prime factors of the denominator n of an element $r=m / n \in S$ with (m, n) relatively prime integers must belong to a fixed set of primes \mathcal{P}.

Thus subrings of \mathbb{Q} are classified by subsets of the set of all prime numbers.
Exercise 4. Prove that the ring $\mathbb{Z}[i]$ is a Euclidean domain (hence PID and UFD). Find the set of irreducibles of $\mathbb{Z}[i]$.

Exercise 5. Prove that the following rings are not principal ideal domains: $\mathbb{Z}[x], \mathbb{Z}[\sqrt{-5}], k[x, y]$.

Exercise 6. Prove that the following rings are not Noetherian.
(1) The subring $R \subset k[x, y]$ of polynomials of the form $f(x, y)=a+y g(x, y)$, with $a \in k$.
(2) The ring ${ }^{1}$ of algebraic integers, consisting of all complex numbers that are roots of a monic polynomial equation over \mathbb{Z}.

[^0]Exercise 7. (Optional, challenging exercise) Let $\operatorname{Int}(\mathbb{Z})$ be the subring of $\mathbb{Q}[x]$ consisting of polynomials that take integer values on all integers.
(1) Show that for all natural numbers $n \geq 0$, the polynomial

$$
\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!}
$$

is in $\operatorname{Int}(\mathbb{Z})$. So $\operatorname{Int}(\mathbb{Z})$ is strictly larger than its obvious subring $\mathbb{Z}[x]$.
(2) Show that the polynomials $\left\{\binom{x}{n}: n \in \mathbb{N}\right\}$ form a \mathbb{Z}-basis for the \mathbb{Z}-module $\operatorname{Int}(\mathbb{Z})$.
(3) Show that the $\operatorname{ring} \operatorname{Int}(\mathbb{Z})$ is not Noetherian.

For more details on the amazing properties of this ring, see What are Rings of IntegerValued Polynomials? by Michael Steward.

Hint for Exercise 1. Consider the field $R(x)$ of rational functions in one variable: the field of fractions $f(x) / g(x)$ where $f, g \in R[x]$ are polynomials, g not (idenfically) zero, and we are allowed to simplify by common factors.

Hint for Exercise 2. (1) Use $1 /(1-a)=1+a+a^{2}+\ldots$. For the converse, take a nontrivial unit in $R=\mathbb{Z}$. (2) Straightforward computation. For the last part, $x=r_{1} x+r_{2} x$, whereas uniqueness of decomposition comes from orthogonality and idempotence of the r_{i}.

Hint for Exercise 3. (1) Use Bezout's lemma: since m, n are relatively prime, there exist integers a, b such that $m a+n b=1$. So $1 / n=b+(m / n) a \in S$ and so $1 / p \in S$. (2) Let \mathcal{P} be the set of primes appearing as a factor of a reduced denominator of an element $m / n \in S$. By (1), for $p \in \mathcal{P}, 1 / p \in S$. Now it's easy to see that S must be the ring described.

Hint for Exercise 4. For (1), the norm is simply absolute value $|a+i b|=a^{2}+b^{2}$. A geometric argument shows that there is division with remainder with smaller norm. For (2), use the fact that a prime number p that is congruent to 1 modulo 4 can always be written as a sum of two integer squares, for example $5=1^{2}+2^{2}, 13=2^{2}+3^{2}$. (Lagrange's theorem, taught in number theory classes.)

Hint for Exercise 6. (1) Consider the ideal ($y, x y, x y^{2}, \ldots$) of R. (2) This will follow from material in the section on integral extensions; alternatively, use the theory of symmetric functions.

Hint for Exercise 7. (1) For $x \geq 0$ integer, $\binom{x}{n}$ is the answer to a combinatorial question and thus a (non-negative) integer. For $x<0$, re-write the product in the numerator as a sign times a product of nonnegative integer terms to see that the whole expression is a sign times a (positive) binomial coefficient. (2) Prove first that $\left.\left\{\begin{array}{l}x \\ n\end{array}\right): n \in \mathbb{N}\right\}$ forms a linearly independent set over \mathbb{Z} and also \mathbb{Q}, and that it forms a \mathbb{Q}-basis of $\mathbb{Q}[x]$. Now if $f \in \operatorname{Int}(\mathbb{Z})$, we can definitely write

$$
f(x)=\sum_{k=0}^{n} a_{k}\binom{x}{k}
$$

with $a_{k} \in \mathbb{Q}$. We need $a_{k} \in \mathbb{Z}$. Substitute $x=0$. Proceed by induction. For (3), consider the ideal $I \triangleleft \operatorname{Int}(\mathbb{Z})$ generated by the elements $\binom{x}{p_{i}}$, for p_{i} the i-th prime.

[^0]: ${ }^{1}$ Extra exercise: prove that this set forms a ring.

