Reinforcement of Inorganic Nanotubes/Elastomer Composites. Theory versus Experiment

V.Ya. S. Shlefeystik1, V. Reshetnyak1, M. Reinecker2, A. Fisch2, A. Sanchez-Ferrer3, R. Mezzenga1, A. Mroz1 and W. Schranz2

1 Physics Faculty, National Taras Shevchenko University of Kyiv, Volodymyrskaya street 64, Kyiv, 01601, Ukraine
2 Physics of Functional Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien, Austria
3 ETH Zurich, Institute of Food, Nutrition & Health, Food & Soft Materials Science Group, Schmelzbergstrasse 9, LFO, E23-E29, CH-8092 Zurich, Switzerland
4 J. Stefan Institute, Jamova 39, SI 1000 Ljubljana, Slovenia

Abstract

Reinforcement of polymers by strong fibrous network permits fabrication of Polymer Composites characterized by high tensile strength, high stiffness, high fracture toughness, good abrasion resistance; good puncture resistance; good corrosion resistance, low cost etc. We present experimental and theoretical analyses of mechanical properties of polyurea elastomer nanocomposite based on inorganic MoS2 nanotubes. The addition of a small amount of nanotubes leads to an increase in the Young’s modulus of up to 40%. The Young’s modulus is measured within the temperature range from 80 °C to 280 °C and frequencies 0.05-40Hz. We compare the experimental data with theoretical modeling. The modeling is based on currently available effective medium approximations [1-6].

1. Composites

Combine different materials with the objective of getting a more desirable combination of properties. For instance to get the flexibility and light weight of a polymer plus the strength of a ceramic. Matrix is a continuous phase which transfers a stress to other phase(s). Dispersed phase enhances matrix properties. Properties of Composites are determined by: Properties of the fibers; Orientation of the fibers; Concentration (volume fraction) of the fibers; Fiber – matrix bonding; Properties of the matrix.

4. Composite Strength (2)

Discontinuous fibers model (valid at $L_t > 15/d$) where L_t – fiber length, d – fiber diameter, τ - shear strength of fiber-matrix interface

Elastic modulus in fiber direction

$$E_{eff} = E_{mf} + E_f K_V$$

K is the efficiency factor:

- aligned 1D: $K = 1$ (aligned parallel)
- aligned 2D: $K = 0$ (aligned perpendicular)
- random 2D: $K = 3/8$ (2D isotropy)
- random 3D: $K = 1/5$ (3D isotropy)

7. Nielsen's modification of Halpin - Tsai

$$P = P_0 \left(1 + \frac{1}{1 - \frac{f}{f_0}}\right)$$

P is the packing fraction where P_0 is the maximal packing fraction $P_0^{ref}=0.785$ for fibers arranged in a square array $f_0=9.065$ for fibers arranged in a hexagonal array $f_0=0.82$ for fibers randomly distributed with a close packing

Halpin – Tsai works better than “rule of mixtures” in a whole temperature region

References

Acknowledgements

The work was partially supported by the COST Action MP0902 (COST – Composites of Inorganic Nanotubes and Polymers), Austrian Science Fund (FWF), F23582-N18 and the Federal Target Program “Scientific and pedagogical personnel of innovative Russia 2009-2013.”