Nanodiamond-polymer composite gratings as diffractive optical elements for light and neutrons II: neutron optical diffraction properties

Abstract

In the second part of our presentations we discuss the results of diffraction experiments from nanodiamond-polymer composite gratings performed with slow neutrons, i.e., at wavelengths longer than a nanometer. One goal of our investigations is to develop flexible, handy, low cost neutron diffractive optical elements (gratings) which can be tailored to serve as mirrors, two-port beamsplitters, multiport beamsplitters, polarizing beamsplitters or even can be assembled to form an interferometer. Basically three adjustable multiplicative parameters are decisive for the performance, i.e., the reflectivity or diffraction efficiency, of such gratings: the wavelength of the neutrons, the thickness and the neutron scattering density modulation of the grating. While the first is solely determined by the application one has in mind, the second parameter can be adjusted during the production process of the sample or by tilting the grating about an axis parallel to the grating vector, thus increasing the effective thickness. The third parameter, however, can only be tuned via the production process of the gratings but offers an enormous flexibility due to a variety of nanoparticles and the polymeric host materials at hand. For neutrons the important criteria are to design gratings having high coherent scattering length density modulation while avoiding incoherent scattering and absorption at the same time. For interferometric purposes an ideal grating will have high reflectivity and low angular selectivity. Here, we show first results obtained with nanodiamond-polymer composite gratings and outline potential ways to improvements.

Publication
in Photosensitive Materials and their Applications 2020, SPIE Proc. 11367, 113670N