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The efficiency of adapting aspiration levels
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Win-—stay, lose—shift strategies in repeated games are based on an aspiration level. A move is repeated if
and only if the outcome, in the previous round, was satisficing in the sense that the pay-off was at least as
high as the aspiration level. We investigate the conditions under which adaptive mechanisms acting on
the aspiration level (selection, for instance, or learning) can lead to an efficient outcome; in other words,
when can satisficing become optimizing? Analytical results for 2 X 2 games are presented. They suggest
that in a large variety of social interactions, self-centred rules (based uniquely on one’s own pay-off)

cannot suffice.

Keywords: games; satisficing; learning rules; natural selection

1. INTRODUCTION

In a game theory without rationality (see Rapoport
1984), players are not assumed to be able to fully under-
stand the situation in which they are engaged. Their
moves are based on knee-jerk rules rather than on stra-
tegic analysis. Possibly the simplest of such rules is the
win—stay, lose—shift principle, which consists of repeating
an action if it proved successful, and in switching to
another action if not. Suppose that we were playing a
machine with two levers, one resulting in a positive, the
other in a negative outcome. The win—stay, lose—shift
principle would result in our repeating the action with
the positive outcome; if we erroneously tried the wrong
action, we would switch back, in the next round, to the
right action. Many experiments have shown that such a
behaviour, or some approximation of it, is widespread
among human and animal actors. Interestingly, this
crudest form of a learning rule works even in situations
involving several agents, as in the so-called minimal
social situation (Colman 1995).

The win—stay, lose—shift principle was originally
formulated by Thorndike:

‘Of several responses made to the same situation,
those which are accompanied or closely followed by
satisfaction are more firmly connected with the
situation; those which are accompanied or closely
followed by discomfort have their connection with
the situation weakened.” (Thorndike 1911, p. 244)

The wide range of validity of this principle was soon
recognized (see for example, Hoppe 1931; Rescorla &
Wagner 1972). In the hands of H. Simon, satisfaction-
seeking behaviour became a leading contender for
explaining social and economic decision making (see
Simon 1955, 1957, 1962; Winter 1971; Radner 1975). A
considerable amount of empirical evidence suggests that
the behaviour of individuals and firms aims at satisficing,
rather than optimizing.
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But when do we feel satisfied? In certain situations (as
when foraging for food, or for sex) our body knows. In
other situations, we have to find out. We may feel pleased
if we pulled a lever which delivers one dollar, but not if
we are told that the alternative would have delivered ten.
In such a situation, we must learn what to aim for,
whereas in the foraging case our germ line has done the
learning already and the result is encoded in the genome.
Natural selection operating in a population, or a learning
rule based on individual trial and error, can cause an
adaptation of the aspiration level.

It is easy to see how selection, or learning rules, lead to
an optimal aspiration level when playing against nature.
We are interested in exploring how adaptation works
when playing against other players. In the repeated
prisoner’s dilemma game, for instance, a strategy called
PAVLOV does very well (see Kelley et al. 1962; Colman
1995; Kraines & Kraines 1988; Nowak & Sigmund 1993).
PAVLOV is a win—stay, lose—shift rule with an aspiration
level lying somewhere between the two highest and the
two lowest pay-offs. Is there any reason to assume that
selection or learning will adapt the aspiration level
precisely to this interval? How would such adaptive
mechanisms fare in other games? We will assume that our
players are ‘blind robots’ without any knowledge of the
structure of the iterated game, except that they have two
options. They need not even be aware of the existence of
another player. Their only information is the pay-off
which they obtain in each round.

In §2, we shall briefly discuss some mechanisms for
adapting the aspiration level, studying first the action of
selection, and then two particularly simple learning rules,
which are extremal cases of convex updating of the
aspiration level, called YESTERDAY and FARAWAY. In
§3-5, we turn to the simplest games, symmetrical games
between two players having two strategies each. We
examine whether adaptive mechanisms lead to an effi-
cient outcome for such 2 x 2 games. This is one aspect of
a larger question, namely: when is satisficing optimizing?
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In this paper, our approach will be based on analytical
methods. We restrict our attention to deterministic win—
stay, lose—shift strategies based on switching to the alter-
native option if, and only if, the pay-off from the previous
round falls below the aspiration level. (In Thorndike’s
formulation, win—stay, lose—shift is a stochastic rule: the
difference between aspiration level and actual pay-off
only affects the propensity to switch.) For a simulation-
based exploration of win-stay, lose—shift strategies with
longer memory sizes we refer to Posch (1999).

2. GAMES AGAINST NATURE

Consider a two-armed bandit. Pulling one lever yields
pay-off R, pulling the other yields pay-off P, with P<R.
Let a be the aspiration level of a player. The player will
repeat the former action if the pay-off was at least a, and
switch to the other action otherwise. With some prob-
ability €>0 this action is misimplemented. For simplicity,
we shall only consider the limiting case € — 0 (that is, we
compute the outcome for given €>0 and then let €
converge to zero). We assume that the game consists of a
large number of rounds, and that the pay-off for the
repeated game is given by the limit-in-the-mean (LIM)
of the pay-off per round (i.e. lim(p, +...+py)/N for
N — o0, where p, is the pay-off in round »). If a> R, the
player will switch after every round, and obtain as LIM
pay-off (R+ P)/2. If a <P, the player will always be
satisfied, switch only by mistake, and then repeat the new
action until the next mistake occurs. Again the LIM pay-
off is (R+ P)/2. For P<a <R, the player will always
pull the R-lever, except by mistake; after an erroneous P,
the player will switch back to R. The LIM pay-off is R.

How does selection act on the frequencies x, x, and x3
of the three strategies corresponding to the intervals
]—o00,P], 1P,R] and ]R,+ oo[ of possible aspiration
levels? We shall assume that pay-off is converted into
reproductive fitness, and that like begets like. This yields
the replicator equation

& =x(fi =), (1)

where f; is the LIM pay-off for strategy i and / = 3" x/;
is the average LIM pay-off in the population (see
Hofbauer & Sigmund 1998). The dynamics on the corre-
sponding unit simplex $; lead to the extinction of the
‘wrong’ aspiration levels: x, converges to unity. In this
sense, selection yields an aspiration level a in ]P,R].

What about learning? Conceivably the simplest way in
which experience can affect a player’s aspiration level
consists in convex updating, by taking into account the
pay-off obtained in the previous round. More precisely, if
a, is the aspiration level and p, the pay-off in the nth
round, then a,= (1 —a)a,_, +ap,_; for some fixed
a € 10,1[. If the aspiration level is initially higher than R,
then the player will restlessly switch between the two
possible actions, and a, will steadily decrease until it is
lower than R. If, however, a, is lower than P, then the
player will repeat the previous action. If this action
happens to yield R, the aspiration level will soon be
between R and P. If the action yields P, then a,
approaches P from below. A mistake in implementation
will eventually bring it into the ‘right’ interval. Once
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Figure 1. A partitioning of the (S, 7) plane which displays
the 12 symmetrical 2 x 2 games.

there, it will converge towards R from below. An eventual
mistake in implementation happening now will not cause
a, to leave the interval ]P,R] and will immediately be
corrected.

When players play each other (rather than a two-
armed bandit), convex updating can lead to complex
outcomes. We shall therefore restrict attention to two
updating rules which represent two instructive extremal
cases. With YESTERDAY, « =1, i.e. g, is just p,_;, the
pay-off obtained in round n — 1. Even if a player starts
with the P-lever, the first mistake will lead to the R-lever.
The player then stays with this option: any further
mistake will immediately be corrected.

FARAWAY is the opposite case, in some sense. Of
course &« = 0 means no updating at all, which is uninter-
esting. Instead of this, we shall assume that the aspiration
level is slowly but continuously modified towards the
long-run average. This means that if the aspiration level
is in ] —o00,P] or R, + oo[, it steadily moves towards
(R + P)/2 and eventually enters the interval ]P,R]. Once
there, it converges towards R. The direction of change
defines dynamics leading asymptotically towards R,
which is just ‘right’.

3. 2x2 GAMES

The simplest non-trivial games involve two players
with two options each, which we call C and D. We shall
assume that the game is symmetrical, i.e. that the two
players are interchangeable. The pay-off matrix is

R S ;
(5 2) ®
i.e. R is the pay-off for using C against a player also using

C, S for using C against D, etc. We consider only the
generic situation where the four pay-off values are
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Figure 2. A description of the (@) ambitious, (4) balanced, (¢) modest win-stay, lose-shift strategies corresponding to the different
2 x 2 games. The figure displays the corresponding ( pg, ps, p7, pr) coding (sce text), and the LIM pay-off for a player using this

strategy against a player using the same strategy.
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Figure 3. When does selection among the different win-stay, lose—shift strategies lead to the () ambitious (b) balanced or

(¢) modest strategy? The dark shading describes the (S, T') region where a monomorphic population using this strategy can
emerge, and the light grey describes that region where selection leads to a stable bimorphic population, with a well-defined
fraction using this strategy. In the striped region (cases 11 and 12 for 3b,¢), selection leads to a mixed population in which both
the balanced and the modest strategies coexist in a mixture which depends on the initial condition.

pairwise distinct. There are then 12 different rank order-
ings. They correspond to very different strategic situations
(see for example, Rapoport e/ al. 1976; Binmore 1992;
Colman 1995). It is no restriction of generality to assume
R> P (if this does not hold, we just interchange C and D)
and to normalize the values such that R =1 and P = 0.
Each game, then, corresponds to a point in the (S,7)-
plane, and the 12 rank orderings correspond to 12 planar
regions (see figure 1). For the prisoner’s dilemma, for
instance, we have 7 >1 and $<0; for the chicken game
(also known as hawk—dove) 7>1>S5>0, ctc. For the
issue of equilibrium selection in such games, we refer to
Harsanyi & Selten (1988), Van Damme (1991) and
Samuelson (1997). In the games 1, 5, 6, 7, 11 and 12, both
players have a dominant strategy (which yields a higher
pay-off than the alternative, irrespective of the other
player’s choice); the games 6, 7, 8, 9, 10 and Il are
common interest games (the best outcome for one player
is also best for the other—namely R); and the union of
these games, i.e. all except 2, 3 and 4, are Stackelberg-
soluble. (The Stackelberg solution is the strategy which
optimizes the pay-off under the assumption that the reply
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is optimal from the co-player’s view. The game is
Stackelberg-soluble if, when both players adopt their
Stackelberg solution, none can do better by deviating
unilaterally; see Colman & Stirk 1998)

The four pay-off values divide the real line into five
intervals. All aspiration levels in the same interval define
the same win—stay, lose—shift strategy. The two
unbounded intervals correspond to strategies which are
unaffected by the co-player. They consist of switching to
the other option in every round (this will be called ‘NO
SATISFACTION’), or in sticking with one option until a
mistake leads to the alternative (this is called ‘LET IT
BE). The three bounded intervals correspond (in
ascending order) to aspiration levels which are modest,
balanced, or ambitious. For both the prisoner’s dilemma
and the chicken game, for instance, a balanced aspiration
level lies in ]0,1] and corresponds to the strategy
PAVLOV. This strategy consists of playing C if, and only
if, the co-player used the same option in the previous
round as one did oneself.

We may describe each strategy based on the outcome of
the previous round by a quadruple ( pg, ps, p7, pp) Where
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py 1s the probability of using C after having experienced in
the previous round outcome £ € {R, S, T, P}. Because we
consider only deterministic win—stay, lose—shift rules, the
pp values are either zero or unity. Thus PAVLOV, for
instance, is (1, 0, 0, 1). In figure 2 we display for each
game the ambitious, balanced or modest strategies. We note
that in crossing a frontier line, exactly one of the three stra-
tegies is modified, each time by altering two of its digits p.

We now assume that there is a small probability € to
misimplement a move, so that PAVLOV, for instance,
becomes (1 — ¢, €, €, 1 —€). The initial move, then, has
no influence on the long-term outcome of the game. In
Nowak et al. (1995) one can find the LIM pay-off
obtained by using one strategy against a player using
another, for the limiting case € — 0. A player using
PAVLOV obtains, for instance, (R+ S+ P)/3 against a
player using the BULLY strategy (0, 0, 0, 1), respectively
pay-off R against another PAVLOV player (with our
normalization, this becomes (1 +5)/3 respectively 1).

An outcome is pareto-optimal if no other combination
of strategies offers an improvement (i.e. a higher LIM
pay-off) for either player without reducing the pay-off of
the other. It is easy to see that the average for the two
players is then the maximum of R and (7 +5)/2, i.c.
max{(1, (T +5)/2)}. In figure 6a we describe when some
win—stay, lose—shift strategy is efficient, i.e. leads to a
pareto-optimal outcome, if all players adopt it. We note
that the ambitious strategy is never efficient.

For any given game, one can set up the replicator equation
(1) describing the dynamics of the frequencies x,, x, and x,,
of the ambitious, balanced or modest strategies under
natural selection. The analysis of this equation is straight-
forward, but somewhat laborious, because most of the 12
types of game give rise, depending on the parameters § and
T, to several different long-term behaviours; see Pichler
(1998) based on Bomze (1995). We add that no attractor can
be invaded by the win-stay, lose—shift strategies ‘NO
SATISFACTION’ (0, 0, 1, 1)or ‘LETIT BE’ (1,1, 0, 0).

We do not describe all 37 cases, but concentrate on the
following issues: (i) Which aspiration levels get selected?
(i1) When is the outcome efficient?

Concerning (i), the three aspiration intervals never
coexist. At least one is always eliminated. Two intervals
can, in some instances, stably coexist, in the sense that the
dynamics lead to a bimorphic population, part of which
uses one and part another interval, with well-defined
frequencies of the two types. In most cases, the attractor
consists of one type only. In figure 3a—¢, we have darkly
shaded the areas where an aspiration range is stably
adopted by the whole population, and in grey the areas
where it is part of a bimorphism (a stable mixture where
a fraction of the population adopts it). We note that
bistable situations (where the initial condition influences
the outcome) are not rare.

Concerning (ii), we refer to figure 6. We denote in
dark grey the area in the (S,7)-plane where selection
always leads to a pareto-optimal outcome, and in
light grey the zone where some initial conditions
(x5 X35 X,) € 83 lead to pareto-optimality and others do
not. We note that only for a part of the games of type 1,
an unstable efficient outcome exists.

We mention in this context that there exists, for this type
of repeated games, a variant of evolutionary stability which
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Figure 4. The transitions, from round to round, in the
pay-off for a YESTERDAY player against another
YESTERDAY player, (a) for the chicken game (case 2 in
figure 1) and (b) the prisoner’s dilemma (case 1 in figure 1).
The first transition is assumed to be given as the initial
condition.

is called limit evolutionarily stable strategy (ESS); see
Leimar (1997). If everyone in the population is using such a
strategy, then a deviation will be penalized at some state of
the game (including states that are only reached by
mistake). It is easy to check that an ambitious strategy is
never a limit ESS. Among the modest strategies, GRIM
(1, 0, 0, 0) is always a limit ESS, and no other strategy is.
Among the balanced strategies, (1, 1, 1, 1) is always a limit
ESS, PAVLOV (1, 0, 0, 1) if and only if 7 < 2, and the
other two strategies are never a limit ESS. We emphasize
that a limit ESS need not be an attractor for the replicator
dynamics (for instance, GRIM can be invaded by PAVLOV
if 7< 2and —1/2<5<0).

4. THE STRATEGY YESTERDAY

YESTERDAY repeats the previous move if, and only
if, it obtained a pay-off at least as good as in the round
before. Let us compute the average pay-off between two
YESTERDAY players. As soon as the initial condition,
i.e. the transition from the first round to the next, is given
(for instance 7 — T or T — R), all further transitions
are specified. Obviously, players experiencing the same
outcome in two consecutive moves (for instance 7 — T)
will not shift to another move (except by mistake, but we
shall ignore this for the moment). This yields four
stationary states, namely r:R— R— R— ..., and
similarly s, ¢ and p. Furthermore, because P<R by
convention, the transitions P — R and R — P must be
followed by the stationary state r. The other transitions
depend on the rank ordering of the pay-off values.
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Let us consider this for the chicken game (number 2 in
our notation). Figure 4a shows how the game develops.
For any initial condition, one of the four stationary states
r, s, t or p is reached.

We allow now for misimplementing a move with a
small probability e. In the stationary state 7, for instance,
one of the players can mistakenly play D instead of C
(we assume that both players are equally likely to get
their next move wrong, and we neglect the possibility
that both players make a mistake in the same round, an
event occuring with probability €?). Thus a mistake can
lead from R— R to R— T or to R— S (but not to
R — P). Because this leads, after three rounds, back to 7,
and because we may neglect the possibility that two
mistakes occur within three rounds (which again has a
probability proportional to €’), a mistake leads from r
back to r. Similarly, a mistake in s leads to § — R or to
$§ — P, and hence after two or four rounds yields the
steady state 7. The same happens if a mistake occurs
when in state £ But a mistake in p leads with equal
probability to P — S or P — 7T, and from there to the
steady states s or .

Thus errors in implementation can be described by a
Markov chain having as states 7, s, ¢ and p (in this order),
and as transition matrix

1 0 0 0
1 0 0 0
1 0 o0 of (3)
0 1/2 1/2 0

This matrix has a unique stationary distribution ,
given by m, =1 and 7, =m, =m, =0. It follows that if
two players using YESTERDAY play a repeated chicken
game, their pay-off (defined as the LIM of the pay-off
per round) is R, which is an eminently sensible outcome.
Both players cooperate (i.e. do not escalate the conflict).

If we consider, instead of the chicken game, the prison-
er’s dilemma game (number | in our notation), we find a
very different outcome, in spite of the fact that only P
and § have been permuted in the rank ordering of pay-off
values. In addition to the four steady states 7, s, ¢ and p,
we now find a cycle of period four, namely
T—-P—>S—>P—>T— ..., which we call ptps. In
figure 44, we display the transitions.

From the steady states 7, s, ¢ and p, every misimplemen-
tation leads to ptps. Errors occurring within the cycle
have a more varied outcome. A misimplementation turns
S — P either into § — S or into S — T, and hence leads
with equal probability either into the steady state s or
back into ptps. Similarly, mistakes turn 7 — P with equal
probability either into the steady state ¢ or back into pips
again, whereas they turn P — S and P — 7 into r or p.
The transition matrix between the steady states 7, s, ¢, p
and ptps (in this order) is given by

o 0 o0 0 1
o 0 0 0 1
o 0 0 0 1 (4)

o 0 o0 0 1
1/4 1/8 1/8 1/4 1/4

The wunique stationary distribution 7 1is given by
ﬁ(Z, 1,1,2,8), and the mean pay-off per round is
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(2R4+ 35+ 3T 4+ 6P)/14, which is considerably lower
than the pareto-optimal outcome.

One can similarly compute the pay-off for
YESTERDAY against itself for each of the remaining
games. The result is shown in figure 6¢. The game 8 (the
stag hunt game) admits the cycle pips and the two games
5 and 12 admit the cycle rsrt. All other games have only
the steady states 7, s, ¢ and p.

Among the games where C is the dominating solution
(i.e. where T <1 and §>0) YESTERDAY always leads to
the corresponding outcome 7, except for games 12 and 5.
These happen to be precisely the two cases where
(T 4+ 5)/2 can be larger than R. The pay-off achieved is
actually a convex combination of these two values.

Another interesting point concerns games 9 and 10. In
these games, players have to coordinate their strategies,
and this is actually achieved by YESTERDAY. However,
the pay-off is not necessarily the pareto optimum R;
rather, it is the maximin solution (which is P in case 9).

Figure 6¢ displays the games for which YESTERDAY is
efficient.

5. THE STRATEGY FARAWAY

A very large updating factor (an a-value close to unity)
often seems inefficient. Small «-values promise to do
better. Numerical simulations show that we can
approximate convex updating with very small a-values
(infinitesimally slow updating) by the following contin-
uous time dynamics. The aspiration levels of the two
players at time ¢ are denoted by a;(¢) respectively ay(¢).
The two corresponding axes are divided by the pay-off
values R, S, T and P into five intervals each, and the
(a1, ajp)-plane therefore into 25 regions. In each of these
regions, the win—stay, lose—shift strategies of both players
are well defined and lead to LIM pay-offs Py(a;, a;;) and
Py (ay, ary). If we assume now that the aspiration levels
are steadily updated in direction of the LIM pay-off actu-
ally achieved, we obtain

a; = Py(ay, ayy) — ay,

any = Py (ay, ay) — ayy. (3)

This yields dynamics in the (a;, aj;)-plane which, as they
describe the trait values of the two players, are somewhat
related to adaptive dynamics (see Metz et al. (1996)),
although they describe individual learning rather than
evolution.

We shall only sketch the mathematical basis of this
model (see Posch & Sigmund (1999) for details). The
orbits of (5) are piecewise linear. The vector field can be
discontinuous on the boundaries of the 25 regions. A
standard way to handle such a differential equation is to
transform it into a differential inclusion

(a1, any) € Flay, ay), (6)

where F(af, af;) is the smallest convex set containing all
limit values of the right-hand side of equations (5), for
(ay, ay1) = (af, af;). Such a differential inclusion has at
least one solution; see Filippov (1988).

It is easy to see that we can restrict our attention to the
bounded intervals of the aspiration levels, namely m, b
and a, because all orbits end up there. The dynamics are
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Figure 5. Different parameter values for the prisoner’s
dilemma lead to different dynamical outcomes for two players
using FARAWAY as an updating strategy. (a) 7 <2,
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(T—=2)/(S+1),and (d) T>2,5< —1,and ($—2)/T <

(T —2)/(S+1). At the asymmetrical attractors for

(b), one player is ambitious and experiences the pay-off
sequence pripr. .. , the other is balanced and experiences
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symmetrical in (a;, aj;) and it suffices to study the regions
where a;<ap;. Hence, we have to consider only six
regions. In each rectangle, the pay-off values (P, Py) are
constant. All orbits in that rectangle point towards
(Pr, Py).

Let us describe this in case 1, which includes the prisoner’s
dilemma. In the rectangle m x m (where both players use
the modest strategy) the orbits point towards (0, 0),
which is the upper right corner. There, random shocks
will push them into the rectangle b xb. Here, all orbits
point towards the upper right corner, namely (1, 1). From
the rectangle a x a the orbits point towards (1/2, 1/2)
and thus lead into b X b or b x a. In m X b the orbits point
towards ((1+27)/5, (14 25)/5) and hence lead either
into m X mor b x b. In m x a the orbits point to (7/2, §/2)
and thus lead into & x a or m x b. Hence, eventually the
dynamics leads to the rectangles 4 x b (and thus to (1, 1))
orb X a

In b x a the orbits point towards ((1 4+ 5)/3, (1 + 7)/3).
This i1s where things can get more complicated and we
have to distinguish four cases (see figure 5).

For T <2 the orbits point downwards into the rectangle
b x b such that (1, 1) becomes an attractor. Thus, the
aspirations ultimately converge to (1, 1) and the players
cooperate (figure 5a).

If T>2 the orbits starting at the lower edge of the
rectangle b X a point upwards and thus (1, 1) is no longer
attracting. If additionally S> — 1 the point ((145)/3,
(1 4+ 7)/3) lies in the rectangle b x @ and hence becomes
an attractor. Thus, all orbits in b X a converge to
((1+95)/3, (1 4+ T)/3) (figure 5b). If instead S< — 1, all
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orbits in & X a lead into the rectangle m x a. The orbits in
m X a in turn lead into 4 X a. Thus, they converge to the
boundary of the rectangles m X a and b x a. There the
dynamics can lead up or down: if (§ —2)/7T > (T —2)/
(S41), there is an attractor point (0,[7 (14 7T)
=S(1+ 93T —2—-25)) on the boundary of bxa
and m X a to which all orbits in b X a converge
(figure 5¢). If (S —2)/T <(T —2)/(S+ 1) the orbits at
this boundary point downwards and will eventually
reach the rectangle b x b, where they converge to (1, 1).
Only an error pushes them back to b x a (figure 5d).
Hence, if the probability for errors is low, the players
cooperate most of the time.

Thus, in figure 5a,d FARAWAY leads to co-operation.
However, only in figure 5a (1, 1) is an attractor. Note that
this is exactly the parameter range for which the
PAVLOV strategy is evolutionarily stable (see Leimar
1997). For the parameter ranges in figure 5b,¢ there are
two attracting fixed points for the aspiration levels where
the agents switch actions every round, and thereby
achieve a pareto-optimal outcome.

A similar analysis can be performed for the chicken
game (case 2). Again, slow updating leads to many
different outcomes. Only for S<1/2 and 7 <2 will all
orbits converge to (1, 1). For §<1/2 and 7 > 2, the point
((145)/3, (1 + T)/3) will be an attractor in b X a where
the players switch actions every round; for S>1/2 the
points (7, 8) and (S, T) are attractors (if 7 <2 the
point (1, 1) will also be an attractor). In these cases the
initial aspiration levels determine which equilibrium gets
selected.

In figure 6d the area where FARAWAY is efficient is
shaded.

6. DISCUSSION

The problem of adapting the aspiration level has intri-
gued psychologists and economists alike (see for example,
Thibaut & Kelley (1959), Sauermann & Selten (1962),
Weber (1976) and Tietz (1997)). In order to obtain analy-
tical results, we have concentrated on a particularly
simple setting. Our agents are robots with minimal
cognitive abilities. They use ‘hard-wired’ deterministic
win—stay, lose—shift rules based on a specific aspiration
level and on the pay-off obtained in the previous round.
These are severe restrictions, and we must discuss how
much they affect the conclusions.

The lack of stochasticity in the switching rule is
certainly a serious drawback. In more general win—stay,
lose—shift rules, the propensity to switch from one option
to the other is a function of the difference x between
aspiration level and pay-off. It is reasonable to assume
that this function is monotonically increasing, but our
restriction to the step function f(x) =0 for x<0 and
f(x) =1 for x>0 is certainly too narrow. Often, it pays to
display a certain degree of frustration tolerance, i.e. not
always to switch after an unsatisfactory outcome, but only
with a certain probability. There is a huge literature on
stochastic decision rules: we refer only to Bush &
Mosteller (1951), Staddon (1983), Kraines & Kraines
(1988), Gilboa & Schmeidler (1995), Wedekind & Milinski
(1996), Posch (1997), Fudenberg & Levine (1998), and
Young (1999).
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Figure 6. Efficiency. (a) The shaded region describes the (S, T) values for which some win-stay, lose—shift strategy is efficient.
(b) In the dark region, selection among the different win-stay, lose-shift strategies always leads to the fixation of an efficient
strategy, whereas in the light grey region some, but not all, initial conditions lead to such an outcome. (c) This displays the
pay-off values obtained by one YESTERDAY player against another. The light grey shaded region describes the (S, T) values
for which the outcome is efficient. (d) In the dark region the adaption of the aspiration level by two FARAWAY players always
leads to a parcto-optimal outcome, whereas in the light grey region some, but not all, initial conditions lead to it. In some
regions, the two FARAWAY players end up with different aspiration levels. The chicken game is the only one for which both

YESTERDAY and FARAWAY are efficient.

We note in this context that within the class of deter-
ministic memory-one strategies (those for which p; is zero
or unity, up to the error probability), the highest pay-
off achievable by the whole population, in case
R<(T +9)/2,is (2R+ T + 5)/4 (see Nowak et al. 1995).
Hence our win-—stay, lose—shift rules can never be
efficient in this case, whereas stochastic memory-one
strategies, for instance (1/2,0, 1,1/2), can. We stress
that for the chicken game with $>1/2, one out of two
FARAWAY players may end up with LIM pay-off 7, the
other with S. In this case the outcome is pareto-optimal,
but the two players will converge to different roles, one
dominating the other. This is a good outcome for the
entire population, because escalated contests are avoided.

We must also stress that in the games we have consid-
ered (both against nature and 2 x 2) the pay-off was a
deterministic function of the outcome. This excludes
important situations such as the binary choice model (a
stochastic two-armed bandit whose left lever yields one
dollar with probability p, and whose right lever yields one
dollar with probability ¢). In that case, a deterministic
win-—stay, lose—shift rule leads to pulling the left lever
with probability

_ 1-q¢
(1—p)+(1—9)’

which is obviously not efficient. Interestingly, however,
this comes very close to what untutored players actually
do (Estes’ law or the matching rule; see, for example,
Colman (1995)), although these players do not adhere to
a deterministic win—stay, lose—shift rule.

Furthermore, we have concentrated on deterministic
updating. In general, updating strategies for repeated
games are defined by algorithms specifying the aspiration
level as a (possibly stochastic) function of the initial level
and the pay-offs experienced so far (see Karandikar et al.
(1998), Kim (1999) and Pazgal (1999)). We have only
considered some extreme cases, which can be treated
analytically. We believe nevertheless that our results also
carry over to more realistic situations. In particular,
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whereas almost every updating procedure works well in
deterministic games against nature, it offers no general
recipe in dealing with stochastic effects or the inter-
dependence of several players.

In many cases (such as in the minimal social situation,
or the iterated prisoner’s dilemma), having the right
aspiration level leads to a good outcome. But finding this
aspiration level through trial and error usually requires
more insight into the structure of the interaction than can
be achieved by updating strategies implemented by
purely self-centred robots.

There is obviously no reason to assume that our para-
meterization of the (S, 7)-plane reflects in any way the
relative importance of the 12 different game-theoretic
situations. Some interactions (for instance, chicken games)
are likely to occur in most social groups, because they
reflect whether to escalate a conflict or not; in contrast, it
is hotly debated whether the prisoner’s dilemma game is
often found in real world situations. It seems plausible
that for games which occur frequently, selection leads to
the evolution of specific strategies (which may or may not
be of the win—stay, lose—shift type).

In the prisoner’s dilemma game, for instance,
YESTERDAY obtains against PAVLOV the same pay-off
as PAVLOV against itself, namely R (this can easily be
checked by the same method as in §4). Because
YESTERDAY obtains against itself a lower pay-off, it
follows that PAVLOV dominates YESTERDAY. Having
the ‘right’ aspiration level a priori turns out, not surpris-
ingly, to be better than adapting it from round to round.
This contest is unfair, of course, if we assume that there is
no way of knowing in advance the pay-off structure of the
game encountered. But for particularly relevant games,
knowledge could be hard-wired into an innate response.

We note that for many games, FARAWAY leads to
outcomes where the agents switch their actions again and
again as, for example, for the prisoner’s dilemma in the
cases (b) and () discussed above (see Figure 5). This
contrasts with the asymptotic results of Karandikar et al.
(1998). These authors study a related win—stay, lose—shift
rule, which however is stochastic. Karandikar et al. show
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that for all games with 7 >S5 and $S<0 (i.e. games 1, 8
and 4), the players will obtain pay-off R most of the time,
in the limiting case of infinitesimally slow updating. This
is mainly due to the fact that players do not always shift
after a failure. In that case all regions in the (ay, ay)-
plane where the aspiration levels change periodically are
left in finite time. Thus, if trembles in the aspirations are
very rare, the process stays most of the time at the vici-
nity of pure equilibria. However, simulations show that
for small a-values the asymptotic results of Karandikar et
al. have little predictive power for the dynamics in the
‘short’ run, because aspirations can get stuck for hundreds
of thousands of rounds close to equilibria where players
switch actions again and again; see Posch (1998).

We have emphasized the efficiency (or inefficiency) of
learning rules. This issue is distinct from the evolutionary
stability of such rules (see Maynard Smith (1982), and for
a notion more appropriate to repeated games, Leimar
(1997)). Nevertheless our results make it seem doubtful
that deterministic learning rules which are valid for a
wide range of games will evolve. We believe that selection,
in the realm of social interactions, favours (i) the ability
to recognize very specific types of interaction, and to
adopt strategies which are hand-tailored for them, and
(i1) the emergence of an understanding based on more
than just registering the own pay-off sequence.

Let us explain this last point. We have seen, for
instance, that YESTERDAY excels only for a rather
restricted range of games. This is in stark contrast with
the strategy YESTERMAX, where players use as
aspiration level in round n the maximum of their own
and their co-player’s pay-off in round n—1. If both
players use YESTERMAX, they always have the same
aspiration level (clearly), and it can easily be shown that
they always end up obtaining pay-off R, except in case 9,
a coordination game, in which case they obtain the
maximin P. (Using the same method as in §4, one can
easily show that here are only two attractors for the
transition chains, namely r and p, and that mistakes both
in 7 and in p always lead to 7, with the curious exception
of case 9, when they always lead to p.) This is a remarkable
performance, showing that, oddly enough, envy is often an
efficient impulse. Indeed, YESTERMAX is just a trite
instance of the principle of ‘keeping up with the Jones’. But
clearly YESTERMAX requires a substantial cognitive
ability; to monitor the co-player’s pay-off and to compare
it with one’s own implies a high degree of empathy.

The view that even the simplest repeated games
require a strategic understanding agrees well with the
currently favoured opinion that the major selective
stimulus for the evolution of intelligence comes, not from
games against nature (like optimal foraging or anti-
predator behaviour), but from the demands of social inter-
actions; see Alexander (1987) or de Waal (1996).

This project has been supported by the Austrian Fonds zur
Forderung der wissenschaftlichen Forschung P11144.
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