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Equal Pay for All Prisoners

Maarten C. Boerlijst, Martin A. Nowak, and Karl Sigmund

By prisoners we mean, of course, players of the well-known Prisoner’s Dilemma
game (to be described presently). We shall show that there exist simple strategies
for the infinitely iterated Prisoner’s Dilemma that act as equalizers in the sense
that all co-players receive the same payoff, no matter what their strategies are like.

The Prisoner’s Dilemma game, a favorite with game theorists, social scientists,
philosophers, and evolutionary biologists, displays the vulnerability of cooperation
in a minimalistic model (see [1] to [5]). The two players engaged in this game can
choose whether to cooperate or to defect. If both defect, they gain 1 point each; if
both cooperate, they gain 3 points; but if one player defects and the other does
not, then the defector receives 5 points and the other player only 0. The right move
is obviously to defect, no matter what the other player does. As a result, both
players earn 1 point instead of 3.

But if the same two players repeat the game very frequently, there exists no
strategy that is best against all comers. The diversity of strategies is staggering. If
we simulate on a computer populations of strategies evolving under a mutation-
selection regime (with mutation introducing new strategies and selection weening
out those with lowest payoff), we observe a rich variety of evolutionary histories
frequently leading to cooperative regimes dominated by strategies like Pavlov
(cooperate whenever the opponent’s move, in the previous round, matched yours)
or Generous Tit For Tat (always reciprocate your opponent’s cooperative move,
but reciprocate only two-thirds of the defections). Remarkably, all strategies of the
iterated Prisoner’s Dilemma, which can be very complex and make up a huge set,
obtain the same payoff against some rather simple equalizer strategies.

More generally, let us consider a two-player game where both players have the
same two strategies and the same payoff matrix. We denote the first strategy (row
1) by C (for ‘cooperate’) and the second (row 2) by D (for ‘defect’) and write the
payoff matrix as

Opponent

| € D (1)
You C |R,R S,T
bD|T,§ P,P

Such games include the Prisoner’s Dilemma, where T> R > P > S, and the
Chicken game, where T > R > § > P. (In the Prisoner’s Dilemma case, R stands
for the reward for mutual cooperation, P is the penalty for mutual defection, T is
the temptation payoff for unilaterally defecting and S the sucker payoff for being
exploited.)

~ Let us assume that the game is repeated infinitely often. A strategy in such a
supergame is a program telling the player in each round whether to play C or D.
The program may be history-dependent and stochastic: it specifies at every step
the probability for playing C, depending on what happened so far. If A4, is the
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payoff in the n-th round, the expected long-run average payoff for a player is given
by
A+ +Ay
lim ————, 2
LN )

provided it exists. It need not always exist: think of two players cooperating in the
first 10 rounds, defecting in the next 100 rounds, then cooperating in the following
1000 rounds, etc. .

Memory-one strategies are particularly simple. Such a strategy is given by the
probability to play C in the first round, and a quadruple p = (pg, ps, Pr> Pp)s
where p; denotes the probability that the player plays C after having experienced
outcome i € {R, S, T, P} in the previous round. Some of the most successful
strategies belong to this class, including Generous Tit For Tat (1,1/3,1,1/3) and
Pavlov (1, 0,0, 1).

Theorem. If max(S, P) < min(R, T), then there exist, for every value m between
these numbers, memory-one strategies p such that every opponent obtains the long-run
average payoff w against a player using such a strategy. The vector p is given by

(1-(R-m)a,1 = (T~ m)a, (7w~ S)a, (7 —P)a) (3)

where a is any real number such that 1/a > max(T — 7, R — @, w — S, m — P).

Proof: The condition on a guarantees that the p; are probabilities. Let us denote
by g,(n) the conditional probability that the opponent plays C in the following
round, given that the n-th round resulted in outcome i, and by s,(n) the probability
that the outcome in the n-th round is i. By conditioning on round n, we obtain:

sa(n + 1) = sp(n)qr(m)[1 = (R - m)a] + ss(m)qs(m)[1 = (T = m)a]
+8r(n)qr(n)(m = 8)a + sp(n)qp(n)(m — P)a. 4
Similarly,
ss(n + 1) = sp(n)(1 = gg(n))[1 = (R = 7)d]
+55(m)(1 = g5(m))[1 = (T = m)a]
+s7(n)(1 = gr(n))(m = S)a + sp(n)(1 = gp(n))(7 — P)a. (5)
Summing (4) and (5) yields the probability that you play C in round n + 1
sp(n + 1) +s5(n + 1) =s(n)[1 — (R — m)a] +sg(n)[1 = (T — m)a]
+sp(n)(m—8)a + sp(n)(7m— P)a.
Hence
a '[sg(n) +sg(n) —sg(n+1) —sg(n+1)] =
Rsp(n) + Ssp(n) + Tsg(n) + Psp(n) — w[sg(n) + sg(n) + sp(n) + sp(n)].
(6)

Since the s,(n) sum up to 1, the right-hand side is just 4, — 7, where A4, is the
opponent’s payoff in the n-th round (we must bear in mind that one player’s
outcome S is the other player’s outcome 7'). Summing up (6) for n = 1,..., N and
dividing by N, we obtain

+ o+ Ay

1 A+
W[SR(l) +55(1) = sg(N + 1) —sg(N +1)] = — N ™
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and hence
A+ + Ay
1313100 N . [ |

A few final remarks. Two players using equalizer strategies are in Nash
equilibrium, which means that neither has an incentive to change strategy. Nash
equilibria exist for every game; for iterated games, they abound. Indeed, the
so-called Folk Theorem in game theory states that every feasible pair of payoff-val-
ues exceeding the minimax (the highest payoff that a player can enforce, which in
our case is max(S, P)) can be realized by a Nash-equilibrium pair [2, p. 373]. Our
theorem is related to this: the strategies are equalizers with memory one. Two
players using such strategies have no reason to switch unilaterally to another
strategy, since they cannot improve their payoff; however, they have no reason not
to adopt another strategy either, since they will not be penalised. Since their
opponent plays an equalizer strategy, they can switch to any other strategy, and
not be worse off. If both players opt for a change, however, they are likely to end
up in a non-equilibrium situation.

If a is chosen small enough, the runs of consecutive defections or cooperations
can be made arbitrarily long. The condition min(R, T) > max(S, P) and its con-
verse are not only sufficient, but also necessary for the existence of such equalizer
strategies. It is easy to construct other equalizer strategies. For example, play C
until the opponent’s mean payoff is larger than 7, then play D until it is smaller
than 7, then play C until it is larger again, etc. However, such a strategy requires
monitoring the opponent’s entire payoff sequence. The point is that even within
memory-one strategies, equalizers exist.
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