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A DIFFERENCE EQUATION MODEL FOR THE HYPERCYCLE*

JOSEF HOFBAUERT

Abstract. The paper presents a qualitative analysis of a system of n cyclically coupled difference
equations x}=x;(C+kx;_;)(C+®)! with ® =Y k,x;x;_,, which may be viewed as a discrete analogue of
the “hypercycle” differential equation x; = x;(k;x,_, — ®). These equations are of particular interest in the
theory of self-organization and biological evolution and have applications to the study of the social behaviour
of animals.

1. Introduction. A hypercycle, as introduced by Eigen and Schuster [4], is a
system of n self-replicating macromolecules, which are coupled together by a closed
loop of catalytic reactions, such that each species catalyses the self-reproduction of
the next one. The existence of such hypercycles was suggested by Eigen and Schuster
as one of the missing links in the prebiotic evolution [17] from simple self-replicating
elements with enzyme-free copying mechanism, as observed in the *“primordial soup”,
to the highly organized early RNA. Since self-replicating elements are strongly compet-
ing, such a coupling between them is necessary in order to overcome the information
crisis and build up larger units with better replication mechanisms. Obviously a cyclic
coupling is the simplest one which will guarantee coexistence or ‘‘cooperation”.

A simplified mathematical model for such a system is given by the following
ordinary differential equation

n
(1.1) X =x;(kxi_— D), i=1,--+,n, d=Y kxx;_,.

i=1
Here x; denotes the concentration of the ith species, whose growth rate X;/x; is
proportional to the concentration of the preceding species x;_;. (Indices are counted
modulo n throughout this paper, i.e., Xo=X,, X; = X,+1," - *.) ® denotes the general
flux which is introduced in order to keep the total number of elements constant:

i1 xi=1.

Now the problem arises of giving a mathematical proof of the above “obvious”
assertion, that this system indeed guarantees cooperation, i.e., no species dies out. To
be more precise, we give the definition:

A dynamical system defined on the probability n-simplex

S,,={xeR": x;=Z0and Y x,—=1}

i=1
is called cooperative, if the boundary of S,, 8S,, is a repellor, i.e., if there exists a § >0,
such that liminf,, .. x;(f)= 68 for i=1,- - -, n for every orbit x(¢) starting at x(0) =x
with x; > 0.

The contrary behaviour, when almost all orbits go to boundary, and so at least
one species dies out, is called exclusion. (See [20] for the “right” definition which is
somewhat technical and will not be needed in detail in the following.)

Now the hypercycle differential equation (1.1) has been studied in some detail
[19], [20] and in particular it was shown in [19, Part III] that it is cooperative. This
result was extended further to more general systems in [6], [10]. The concept of
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T Institut fiir Mathematik, Universitat Wien, Strudlhofgasse 4, A-1090 Wien, Austria.
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cooperation and the technique provided for proving it has since then turned out to be
very useful in other parts of biomathematics. We mention only the interesting applica-
tions to persistence of species in ecological communities [11], [12] and refer the reader
to the recent survey on this topic by Schuster and Sigmund [18].

Now most biological systems are characterized by discrete time intervals for
reproduction which give rise to sequences of generations described by difference
equations. From that point of view it seems to be of interest to consider a discrete
analogue of equation (1.1): x}, the value of x; in the next generation shall be propor-
tional to x; and x;_y, i.e. xj~x;(C+kxx;_;). To keep the total number of elements
constant, we have to set
(1.2) x} =% with ® = El kixxi_,, C>0.

For a better motivation of this equation, especially of the new constant C, we write
(1.2) in the form
!
x—lc'_lj= x;(kix; 1 —®) CS(D'

If we now interpret C~' as the time interval between two generations, i.e., x/(t) =
x;(t+ C™"), then (1.2) approximates the hypercycle differential equation (1.1) as C -» o
((C/(C+®))~>1 since  is bounded).

This observation suggests that (1.2) is an appropriate discrete analogue of (1.1)
and one can expect that for large values of C the difference equation has properties
similar to those of the differential equation.

Indeed we will see in § 3 that for arbitrary C >0 the system (1.2) is cooperative
whereas in the degenerate case C =0 it leads to exclusion (§ 4). In order to yield more
information on the form of the attractor we consider the unique fixed point in the
interior of S, which turns out (§ 5) to be a sink for n=3. In this case we prove that
it has the whole interior as its basin of attraction (§ 6). For n =4 the fixed point is a
saddle and numerical investigations suggest a stable ‘“‘limit cycle” as global attractor.
Section 7 contains further results on similar types of difference equations.

2. The connection with animal conflicts and game theory. Maynard Smith [14]
and Maynard Smith and Price [16] introduced game theory into the study of animal
behaviour: Each individual of a population can play one of n strategies, x; denotes
the proportion of the population playing the ith strategy. (A famous example of
Maynard Smith treats the strategies dove, hawk, bully, retaliator, etc. [14], [16], [23].)
The expected gain which arises after a contest of two individuals is expressed by a
n X n-pay-off-matrix (a;). If an individual playing strategy i fights against one playing
J, then the payoff to i is given by a;;, while the payoft to j is given by a;;. If the population
is large, the expected payoft to an individual playing i against an arbitrary competitor
is Y.; a;x; This can also be interpreted as change of “‘fitness” as a result of the contest.
Hence the fitness of an individual playing i is E; = C +); a;x;, where C is some positive
constant, and the ‘‘average fitness of the population” is given by E =Y ,xE;=
C+Yijxax=C+.

Now Maynard Smith [15] proposed to introduce the following dynamics: If each
individual reproduces its own kind in a number proportional to its fitness, then x;, the
value of x; in the next generation, is given by

E. CH+Y,a;x;

(2.1) | xi=xiE:x1 C+d



764 JOSEF HOFBAUER

This is just a generalization of (1.2). Special cases of (2.1) have been studied, for
example, in population genetics [5] and in the theory of the war of attrition [3]. We
shall briefly return to it in § 7, but first we turn our attention to the hypercycle equation
(1.2) which represents a significant special case.

3. Cooperation for C> 0. Let us consider the recursion, defined on the simplex
Sn

’_ C+k,‘x,‘71
(3.1) Xi= X C+d ’

with @ =31, kxx;_;. We denote by x™ the result of iterating (3.1) N times from a
starting value x© = x. With this we have the following theorem:

THEOREM 1. Suppose C>0 and fori=1,- -, n, k;>0. Then (3.1) is cooperative.
That is, for some >0, liminfy_. x{"'=8 fori=1,-- -, n and every xcint S,.

Proof of Theorem 1. We begin with a discussion of the behaviour of our system
on the boundary of S,:

LeEMMA 1. For every x€9S,,: ®(x™) >0 for N - co.

Proof of Lemma 1. Let x be on the boundary. Then x has the form x; =0, x;,; >0,

i=1,---,n

Xi2>0, -+ x>0, Xip 41 =0 for some i, k (1= k <n). We will show that x;,;->0,
Xi+2~0, -+, x4, > 0. For convenience, we set i =0 (according to the cyclic sym-
metry) and k;=1 (j=1,---,n). (The proof also works for arbitrary rate constants

k;, one has only to replace x; by k;.;x; sometimes.)

We prove by induction: x;->0 and x;/x;., converges (finally) monotonically to
some limit v;(1=j<k), which may be infinite.

This statement is trivial for j=0. Assuming it for j we consider the quotient

(x_)zu_cm

Xj+2 Xjo C+ x4

Now if v;>1 or v;=1 and x;/x;1}1, then (C +x;)/(C +x;,1) > 1 and hence X;.,/%;.»
increases monotonically to some limit v}, > 0. Furthermore x;/x;,; > v;>0 and x; >0
implies x;.;>0. It remains the case v;<1 (resp. v;=1 and x;/x;,,71). Then
(C+xj)/(C+x51) <1 and x4,/ x;4, decreases monotonically. If x;,; did not converge
to 0, one could find an £ >0 such that (C+x;)/(C + x;,;) =1—¢ holds for an infinite
number of generations. Then the quotient
ey
(k)

Xj42 Xj+2 k=0 C+xj3

tends to the limit v;,; =0. Now x;4; = X;.1/ %4> and so x;,; =0 too. So every point on
8S, converges to a subface of the boundary where, whenever x;>0 then x,.; =0. On
such a face we have ®(x) =0. It is easy to see that the set {x: ®(x) =0} is just the set
of all fixed points on the boundary. This completes the proof of Lemma 1.

Let us now consider the function P(x) = x;x, - - - x,. We have P(x) =0 if and only
if x€dS,. Therefore P(x) is a measure for the distance of x from the boundary.

Let I(p)=={xeint S,: P(x) = p} for p>0. Cooperation is then equivalent to the
existence of such a layer I(p) which is left for ever after some time by each orbit
starting in the interior of S,. Note that

5’_ —1 (C+kixi—1)>cn+cn_lzkixi—l
P (C+d)" — (C+d)"

On the set of fixed points {® =0} this quotient is greater than 1.
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Since S, is a compact set we have the following two propositions:

!’

(3.2) Fé m>0 everywhereon S,.

/

P
(3.3) Fz M >1 insome neighbourhood A of the set {x € S,,: ®(x) =0}.

Now choose re€ 10, 1[such that M'm' "=t K > 1.
DEerFINITION. For x €3S, let N(x) be the smallest number =1 such that

card {0=k<N(x): x¥ e A}=r- N(x).

This means: the probability that x*)e A for a k < N(x) is at least . Obviously
N(x)=1 if and only if x€ A.

Now we know from Lemma 1 that for x € 8S,, the x*' lie in A for k large enough.
This guarantees the existence of such a number N(x) for each x €498,

LEMMA 2. The function x > N(x) can be extended to some neighbourhood I(p) of
the boundary.

Proof of Lemma 2. 1f for some k<N (x)x®) € A, then each y in some neighbour-
hood U, of x satisfies y(")e A. Therefore, if we choose y in the intersection U(x) of
all such neighbourhoods U, for k < N(x) we get y*)e A whenever x*’ € A, and thus
N(y)=N(x). Since S, is compact a finite number of those U(x) will cover 3S,. Their
union contains a layer I( p) for some p> 0. Furthermore N(x) is bounded on I(p) by
a certain number N. This completes the proof of Lemma 2.

Now we are able to prove Theorem 1. This will be done in two steps:

(1) If xeI(p) then there exists a N with x'™ ¢ I(p), i.e., any orbit leaves the layer
I(p) after some time. Suppose, for all N: x™ e I(p), i.e., d = supn=o P(x™’) = p. Now
choose N, such that y=x™" satisfies P(y)>d- K~ "/2. According to the definition of
N(y) and (3.2) and (3.3) we get

P(y(N(y))) =N(y)—1 P(k+1)
P(y) k=o PY

ngN(y)m(l—r)N(y) =KN(y)§K,

and
(3.4) P(yNO) = KP(y)>d- K"*>d.

However this contradicts the definition of d.

(2) There exists a q <p such that the layer 1(q) is never reached for large times:
If x¢ I(p), then for no N=0 is x™ e I(q). We choose g=p-m"""""*! where N =
max {N(x), xe I(p)}. Suppose xI(p) and let N, be the first time when z=x"? ¢
I(p), thus P(z)> m- p. Then

card{0=k<N(z): 728 g A}=(1-r)N(z)=(1-r)N,
and this with (3.2) implies that

P(z®) _*1P(E"Y)_ aonw
P(z) =0 P(z") — '

Therefore P(z%) = m"NP(z)>m*""N*1p =g holds for all k= N(z), that means
2 ¢ I(q) for k=N(z). For k=N(z) we even have

P(zN) = KP(z),
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which follows from (3.4). This shows that after N(z) generations, during which the
orbit z¥) never entered the layer I(g), the “distance from the boundary” P(z) has
increased at least by the factor K > 1. Repeating our argument, we see that the orbit
will leave the thicker layer I(p) again, without entering the thinner layer I(q) during
that time. Then the play begins again: choose a new x & I(p) on the orbit and apply
the whole argument to it. The orbit can never reach I(g). This completes the proof
of Theorem 1.
Remark 1. It is possible to generalize this theorem to the system

, C+x;_Fi(x) . n
xi= xiC—-I—l@ withC>0, &= i; xxi_1 Fi(x),
where for i=1,---,n, Fi(x) is a continuous, strictly positive function on S,. This

requires only a slight change in the proof of Lemma 1 (see [10, Lemma 3]).
Remark 2. It would be interesting to extend the theorem to the “‘inhomogeneous

hypercycle” [20], [6]:
xi=x(q+kx;—)/® withg, k;>0,

n n
®=3 gxi+ Y kxixiq,
i=1 i=1

Here of course the existence of an interior fixed point has to be added as necessary
condition for cooperation. We conjecture that this is a sufficient condition too, as it
has been shown to be for the corresponding differential equation in [6].

Numerical investigations suggest that for n =4 the attractor in the interior of S,
is a “limit cycle”, an attractive invariant closed curve. Enlarging the constant C leads
to a contraction of this cycle. For C -0 it tends to the boundary following the edges
123 - - nl. The “period” of the rotation increases about proportionally to C for
C -0, for C~>0 it goes to 2n.

For n =4, the limit cycle contracts to the interior fixed point (which is evaluated
in § 5) for C - co. This particular case can be understood as a kind of Hopf bifurcation:
The hypercycle differential equation (1.1), which represents the limit C - co satisfies
just the conditions for the usual Hopf bifurcation if n =4, i.e., two purely imaginary
eigenvalues at the fixed point, the rest of the spectrum has negative real part and the
fixed point is asymptotically stable (see [19, Parts I or II] or § 5). So a small perturbation
of this differential equation, which makes the fixed point unstable creates a stable limit
cycle near the fixed point. That this also holds for perturbations to discrete time, is
not surprising. However a detailed proof of this general phenomenon is rather technical;
it is given in [8].

This proves the existence of an attracting invariant closed curve for large C in
dimension n=4. For small C>0 or n=5 this is an open problem, even for the
differential equation (1.1).

For n =3 the fixed point in the interior is a global attractor as we shall see in § 6.

4. C =0 leads to exclusion. For the sake of completeness we will also discuss the
limit case C =0, where a complete analysis is possible. In this case the transformation
(3.1) becomes

_ kixixi—y

4.1 !
(4.1) x; P

which is not defined on that part of the boundary 3S,, where ® =0. Introducing a
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barycentric change of coordinates
yi= kiv1xi
’ 2 ki1

as in [20, § 3], we can assume without lose of generality that all rate constants are
equal, say k; =1.

First we treat the lower dimensional cases n =3, 4 (n=2 is trivial).

n=3. In this case, the system has period six. In fact,

X1iXh X = XXy 1 X Xy XXy = X5 x5t x !
implies that
[DX3:X3=X31X11%;

and so x© =x.

n=4. In this case, we have exclusion. We have the relations

XYIX5IX50X4= XaXq 1 X1 Xy ! Xp X3 X3Xa,

Tox"e .y _X4 ﬁ x2 X3

X1:X2:X3:X X3X4x1 X4x1x2 x1x2x3 X2x3X4 -
Xy X3 X4 X;

(4).

() 4. 4
X3 ix5 =Xx3:X7,

x(®:xP =xlo:x1C

If x, < x5 the quotient (x;/x3)®* tends to 0, if x;> x5 it goes to infinity. So either x{**

or & tends to zero. This means exclusion.

The cases n >4 require refined arguments.

THEOREM 2. The system (4.1) is exclusive for n=4. Every orbit in a certain open,
dense and invariant subset of S, converges to the boundary of S,, following finally the
sequence of corners 1,1,2,2,---,n,n, 1,1,

Proof. Tterating x|~ x,x;_; we get

(4.2) AN < xxN x ) x g = H X = H xR

N N N
Su(l, k):(k>+<k+n)+(k+2n>+' -

This sum of binomial coefficients can easily be computed:

with

1 n—1 )
Su(N;k)=— % EP1+¢7)N, where é=e"/"
=0
(4.3) L N
_1 "Z gp((N/Z)—k)<2 cos _711?)
np=0 n
For the quotient x;: x;, we get from (4.2) and (4.3)
xSN) n—1
log ) = kgo S.(N, k)[log x;_; —log x;_\]
(4.4) ! L
) 6””/2(2 cos —) folx3 1, J)

n p=0

with f,(x; i, D=YR2h € P (log Xi—x—log x;_).
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To determine the asymptotic behaviour as N - o of (4.4), only the leading term
is important. Since fo(x; i, j) =0, we obtain
) N
X; 2 T
4.5 log{ =) ==Re(&""?fi(x;i,] (2 —) .
(4.5) og(xj) o Re (677 f1(x; & )| Zcos
This asymptotic relation is true whenever the coefficient is nonzero, which is the case
in an open dense subset G of S,. S,\G is a finite union of manifolds determined by
equations of the form Y /., ¢; log x; = 0. Equation (4.5) implies |log (x;/ xj)(N )| - o0, since
2cos m/n>1 for n=4. This means exclusion.
To determine the asymptotic behaviour more explicitly, we note from (4.4) and

Lr(x; it 1, j+ 1) =£EPf(x;54,))

AW 2 \ (N-2)
(4.6) log (E) =~ (2 cos I) log (ﬁ) .
Xj+1 n x;

Iteration gives

\ (V) 2n \ (N=2n)
(4.7) log <ﬁ> =~ (2 cos E) log <ﬁ> .
X; n X;

Note that this extends the final relations obtained in the cases n =3, 4.

Equation (4.7) shows that the sequence x*™™’ tends as N - to a corner of the
simplex. More precisely, if x;>x; for all j#i, then x{**’>1 for N-co: the ith
coordinate dominates.

From (4.6) we now infer that if species i dominates in the Nth generation, then
i+1 will dominate two generations later. To exclude the possibility that one generation
later j will dominate with j# i, i+1, we use the following consequence of (4.5): A
relation x; > x; persists during exactly n generations, then for the next n generations
x; <x; holds, and so on.

This implies finally that every orbit in G tends to the 2n-periodic ‘“‘limit cycle”,
consisting of the sequence of corners 1, 1, 2,2, ---, n, n, 1, 1, - - - . Of course this
strange doubling is only possible since the map (4.1) is not defined at the corners of
the simplex.

5. The fixed point. It is easy to see that our system (3.1) has exactly one fixed
point p in the interior of S,, and it is determined by the equations

(51) k2x1=k3x2=' . '=knxn_1=k1xn and in=1.

In order to compute the eigenvalues of the Jacobian, we write (3.1) in the form
k,‘ i— _(D

(5.2) Xi—x = xi’éfl@

The function on the right side of (5.2) differs from the vector field of the hypercycle
differential equation

(5.3) % =x;(kixi-,— )

only by the factor C+®. So their Jacobians and hence their eigenvalues are also
proportional differing by the factor C +®.
Now the eigenvalues of (5.3) were evaluated in [20] and found to be

D mii
/\j=Nexp<—;Lll), j=1,---,n—1 with N"'=Y k7"
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Therefore the eigenvalues of (3.1) are given by

N > i
wj=1+c+Nexp< :1”])’ j=1,---,n—1.

(The nth eigenvalue Ao=—N (resp. wo=C/(C+N)) corresponds to the relation
2x=1)

The w; form a regular n-gon with center 1 and radius N/(C+N)=1. Now the
fixed point is a sink if and only if |w;| <1 forall j=1,---,n—1. For n=4 this is not
possible, since at least |w;|> 1. Therefore the fixed point is a saddle.

If n=3 and C =0, we have |0,| =|w,| =1 which “explains” our result of § 4 that
there are only periodic orbits. If n =3 and C >0 the fixed point is a sink. The same
holds for the trivial case n=2.

This leads to the problem of how to determine the basin of attraction which will
be solved next with the help of a Lyapunov function.

6. Dimension n =3.
THEOREM 3. The function

3 1 3 3 kix;
V= k,‘ xi> = .
(igl ki+1xi>(i§1 i i,jz=1 ki1

is a global Lyapunov function for the hypercycle (3.1) in the case n =3. More exactly,
V attains its unique minimum at the fixed point p given by (5.1) and V'=V holds
everywhere on S;. For C >0, V' <V holds in int S;\{ p}. Therefore every orbit in int S,
tends to the fixed point. For C =0, V is an invariant: V'= V. Recall that every orbit in
int S5 has period 6.

Proof. Let y;= kivy X Then yi=y,(C+y,_,/(C+®)) and V=33, (yi/yy). It is
clear that

V=3+z(ﬁ+lf);9
i<ji \Yj Yi

with equality only for y, =y, =y, that is for x =p.

! CH+v._
V'=Zy—:=2&&

WY Y CHy

/ Yi Yi-17 Yi—1 Yi-1 1
61 v-vepimsda(s,)y (v, )y —
Y C+yia i 7 yi(C+y) \5 Yot 7 yi(C+yiy)

In order to prove V—V’'=0, we multiply (6.1) by the common denominator
[1;=1 y;(C +y;_;) and introduce the abbreviations

S=yi+y2tys, R=yiy2ty1y3+y2y3, P=yi1y2ys.
It then remains to show the positivity of

S+ L ¥i-19+1(CH+y)(C+y1) =R T yyisa(C+yi)(C+y)
J i

6.2
(62) =Iy(y)+1,(y)C+ L(y)C?
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with I4(y) =0. This proves that V'=V for C =0. Next
L=SY yiz—lyi+1<yi +Yir1) ~R L yiYira(yi+ Yi-1)
=S(PS+Y yiy}1) —~R(3P+Y yiyir1)
=P($?=3R)+SY yiy}1i—R Y yiyin
=P yi—R)+Y yiyin+ L yiyi + 2 yiyiaiiea
=X Vi aYiYie — L YV =X yiviayiez

=P(Lyi-R)+X yiyii—=PLy}
=Y yiyi1— PR
=Y (yi— Y1) yim1 i 2 0.

And finally,

L(y)=SY yyii—R*=( y) X yiyi1) = yyis1)> 20,

which is a consequence of the Cauchy-Schwarz inequality.
Hence the sum in (6.2) is =0 with equality only for y, = y, = y; and the proof of
Theorem 3 is complete.

7. Some remarks on more general dynamical systems. It would be of interest to
study the more general equation

(7.1) x§=xi2j%% with®= Y a;xx;

i,j=1

which may be considered the discrete analogue of the differential equation

]

(72) x,- = .x,'( a;iX; — @) .
=1

As we have pointed out in § 2, both systems arise from evolutionary game theory
and provide a dynamics for a symmetric two-person game with pay-off matrix A = (a;).
In the special case of symmetric matrices a;; = a; they arise also in population genetics
as selection equations. Together with the application to prebiotic evolution, mentioned
in the introduction, these equations therefore play a central role in three parts of
biomathematics. Moreover it has been shown [7] that the differential equation (7.2)
is equivalent, by a simple change of variables, to the Volterra-Lotka equations

n

(7.3) X = xi(£i+ > aijxj).
j=1

The differential equation (7.2) has been studied extensively, see, e.g., [1], [2], [6],
[9], [13], [19, Part II], [20], [21], [22], besides the vast literature on (7.3). For the
difference equation (7.1) however much less is known.

For the selection equation (a;=a;), there is Fisher’s fundamental theorem of
natural selection, which holds for both systems. It says that the mean fitness ® is a
monotonical increasing function and hence optimized for ¢ +co.

Another important special case is for circulant matrices (a; = a,_;) for which the
differential equation was studied in [19, Part II]. For the discrete model we can prove
the following theorem on the rock-scissors-paper game.
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THEOREM 4. Consider the system
x,/‘=xi(aoxi+a1xi+1+a2x,+2)/¢, l=1, 2, 3,

where a;=0. Then V =®/x,x,x; is a Lyapunov function. More precisely:

(i) If a,a,> aj, then V' =V and (,3,3) is a global attractor.

(i) Ifa,a,=a}, then V' = V. Visan invariant. The orbits are rotating on invariant
closed curoves.

(iii) If a;a,<al, then V'= V. The fixed point is a repellor, all orbits tend to the
boundary.

This is analogous to a result on the corresponding differential equation ;=
xi(apx; + a, x4+ arx; 1, — ), obtained in [19, Part I1]. There the function V is replaced
by P=x,x,x; and the conditions a,a,Z aj by a,+a, = 2a,.

The proof of Theorem 4 is straightforward like that of Theorem 3, but more
technical and much too long to be reproduced here.

Besides this there is a recent paper of Losert and Akin [13] treating both (7.1)
and (7.2). They close a long overlooked gap by proving in all detail that in the selection
equation all orbits converge to a fixed point. Furthermore they show that the map
(7.1) defines a diffeomorphism on S,, if all a,,> 0.

Their results and those obtained in this paper, together with numerical calculations
suggest the following rough equivalence principle, also formulated in [13]: The class
of discrete time models (7.1) behave similarly to the continuous time models (7.2),
but the discrete model is harder. It should be possible to prove this vague statement
for n =3, by giving a classification analogous Zeeman [22] gave for the differential
equation. Theorems 3 and 4 above are some partial results in this direction. The key
to the full classification will be the invariant for the system (7.1) with the special matrix

1 a b

This is the discrete analogue of an antisymmetric matrix, for which the invariant of
(7.2) is of the form [ x?, with p a fixed point.
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