next up previous


0.1 Definitions



Positions: $\vec{r}_{i}$, $\vec{r}_{j}$ with $\vec{r} \equiv \vec{r}_{ij} \equiv \vec{r}_{j}-\vec{r}_{i}$ and $r \equiv \vert\vec{r}\vert$;
Interparticle unit vector: $\vec{s} \equiv \vec{r}/r$
Directions (unit vectors): $\vec{u}_{i}$, $\vec{u}_{j}$
Width: $\sigma_{s}=\sigma_{0}$ (side-by-side), Length: $\sigma_{e}$ (end-to-end).

Then
\begin{displaymath}
U\left(\vec{u}_{i},\vec{u}_{j},\vec{r}\right)
=4 \epsilon \l...
...i},\vec{u}_{j},\vec{s}\right)+\sigma_{0}}
\right]^{6}
\right\}
\end{displaymath} (1)

where the generalized diameter and well depth parameters are given by
\begin{displaymath}
\sigma(\vec{u}_{i},\vec{u}_{j},\vec{s})= \sigma_{0}
\left/ \...
...eft( \vec{u}_{i}\cdot \vec{u}_{j} \right)}
\right\}
}
\right.
\end{displaymath} (2)

and
\begin{displaymath}
\epsilon(\vec{u}_{i},\vec{u}_{j},\vec{s})= \epsilon_{0}
\eps...
...,\vec{u}_{j})
\epsilon'^{\mu}(\vec{u}_{i},\vec{u}_{j},\vec{s})
\end{displaymath} (3)

with
\begin{displaymath}
\epsilon(\vec{u}_{i},\vec{u}_{j}) =
1 \left/
\sqrt{
1-\chi^{2} \; \left( \vec{u}_{i}\cdot\vec{u}_{j}\right)^{2}
} \right.
\end{displaymath} (4)


\begin{displaymath}
\epsilon'(\vec{u}_{i},\vec{u}_{j},\vec{s})= 1-\frac{\chi'}{2...
...{1-\chi' \left( \vec{u}_{i}\cdot \vec{u}_{j} \right)}
\right\}
\end{displaymath} (5)

and
\begin{displaymath}
\chi=\frac{(\sigma_{e}/\sigma_{s})^{2}-1}{(\sigma_{e}/\sigma...
.../\epsilon_{s})^{1/\mu}}{1+(\epsilon_{e}/\epsilon_{s})^{1/\mu}}
\end{displaymath} (6)

A widely studied system is defined by the length-to-width ratio $\sigma_{e}/\sigma_{s}$ = 3. In this case the usual choice for the parameters $\mu$, $\nu$ and $\epsilon_{e}/\epsilon_{s}$ is
\begin{displaymath}
\mu=2, \;\;\;\;\;\; \nu=1,\;\;\;\;\;\;
\epsilon_{e}/\epsilon_{s}=1/5
\end{displaymath} (7)

It should be noted that these parameters were identified by an optimal fit to a site-site potential in which 4 LJ centers were placed along a line at distances $2 \sigma_{0}/3$; in other words, the distance between the outer LJ centers was $2 \sigma_{0}$.

For molecules of other l/w ratios other choices of the parameters would be appropriate. However, model simulations are often done with the same $\mu,\nu$, and even $\epsilon_{e}/\epsilon_{s}$.

For $\sigma_{e}/\sigma_{s} \longrightarrow 1$ the model should become identical to the simple LJ model; it does so only if the parameter $\epsilon_{e}/\epsilon_{s}$ is also modified so as to approach $1$. A simple linear interpolation formula would be
\begin{displaymath}
\frac{\epsilon_{e}}{\epsilon_{s}}=
\frac{1}{5} + (3-\frac{\sigma_{e}}{\sigma_{s}}) \frac{2}{5}
\end{displaymath} (8)

The problem with this formula is that for lengths $\sigma_{s}/\sigma_{e}$ larger than $3.5$ it proceeds to unphysical negative values of $\epsilon_{e}/\epsilon_{s}$. In fact, this ratio should, for longer and longer molecules, asymptotically tend to zero, since the negative side-by-side potential energy increases while the end-to-end energy remains finite. An interpolation formula that accounts for this is
\begin{displaymath}
\frac{\epsilon_{e}}{\epsilon_{s}}=
0.4   \frac{\sigma_{s}}...
...{e}} +
0.6   \left( \frac{\sigma_{s}}{\sigma_{e}}\right)^{2}
\end{displaymath} (9)


next up previous
F. J. Vesely / University of Vienna