Franz J. Vesely > Lectures > Spheroellipsoids 
 
 
F VESELY COMP PHYS U VIENNA





 


SPHEROELLIPSOIDS
and what to do with them

Franz J. Vesely, CompPhys Vienna U
See also:
J. Chem. Phys. 141, 064109 (2014)


INTRO


Introduction
  • Hard body models for molecules and colloids already produce most of the bulk properties: isotropic -> nematic -> smectic -> crystalline phases
  • No single standard model for elongated particles exists; there are fused spheres, ellipsoids, spherocylinders, HGO particles, etc., see my lecture on Hard Body Modeling
  • Qualitative difference btw hard ellipsoids (ELL) and spherocylinders (SC): SC can develop a smectic phase, ELL can not
Desirable: a model that has few parameters, yet can be transformed continuously btw ellipsoid and spherocylinder

Recent attempt: SUPerellipsoids (Martinez-Raton, Velasco 2008)
SUPs are not suitable, because no overlap criterion for randomly oriented pairs exists

Let's do SpheroEllipsoids:
  • Truncated ellipsoids with spherical end caps.
  • Only two shape parameters
  • Continuous transformation between a pure ellipsoid and a spherocylinder
  • Use DFT (later MC) to locate the onset of smecticity
  • Generic model particles for anisotropic molecules?
  • Overlap criterion for a pair in a general, non-parallel configuration is given below

MODEL


The Model
  • $a,c$ ... short and long semiaxes; $z_{0}$ ... truncation height
  • Complete the truncated ellipsoid body by spherical segments such that the tangents change continuously at the junction
  • this requirement places the cap centers at $\pm z_{c}$, with
    $z_{c}=z_{0}(1-a^{2}/c^{2})$; the cap radius is $r_{c}=a \sqrt{1-(z_{0}^{2}/c^{2})(1-a^{2}/c^{2})}$
  • Total length of spheroellipsoid: $L=2l=2(z_{c}+r_{c})$
  • Volume: $v=v_{body}+2v_{cap}$, where $v_{body}=2 \pi a^{2}z_{0}(1-z_{0}^{2}/3c^{2})$ and $v_{cap}=(2\pi/3)\,r_{c}^{3}-\pi \Delta z \left(r_{c}^{2}-(\Delta z)^{2}/3\right)$, with $\Delta z \equiv z_{0}-z_{c} = z_{0}a^{2}/c^{2}$
Note: the only parameters are $c/a$ and $z_{0}/a$; all other quantities follow!

PARAMETER PLANE

Parameter Plane
  • All possible spheroellipsoids are situated below the diagonal $z_{0}=c$; points on the diagonal represent ellipsoids
  • Blue: Shapes with fixed aspect ratio $l/a$. Given $c,$ $a$ and $l$, the required value of $z_{0}$ is
    $ z_{0}(c,a,l)=l\left[ 1-\sqrt{(1/l^{2}-1/c^{2})/(1/a^{2}-1/c^{2})}\right] $
  • Green: Shapes with fixed particle volume $v_{0}$; $z_{0}$ is determined numerically

CLOSE PACKING

Close Packing

Simple parallel Ellipsoids, hexagonal configuration: $\eta_{cp}=v/V_{cp}$, where $V_{cp}$ is the unit cell volume:
The point of contact between a particle and its nearest neighbor in the adjacent upper layer has a $z$ coordinate of $z^{*}= c \sqrt{2/3}$, yielding a unit cell volume of $V_{cp}'=8 a^{2} c/\sqrt{2}$.

Spheroellipsoids, hexagonal packing:
  • If the cutoff height $z_{0}$ is larger than $z^{*}= c \sqrt{2/3}$ the geometry of the hexagonal unit cell is the same as for ellipsoids, and so $V_{cp}'=8 a^{2} c/\sqrt{2}$

  • If $z_{0} < z^{*}$ the contact occurs no more between the ellipsoidal trunks but between the end caps; in this case the unit cell volume changes to $V_{cp}''=4 a^{2}\sqrt{3}\, \left( z_{c}+\sqrt{r_{c}^{2}-4a^{2}/3} \right)$


DENSITY FUNCTIONAL THEORY

Density Functional Theory

We wish to determine the density at the nematic - smectic transition.

Second virial approximation:
  • $\phi_{ex}\left\{\rho(\mathbf{r})\right\} \equiv F_{ex}\left\{\rho(\mathbf{r})\right\}/NkT = -(1/2N) \int d\mathbf{r} \int d\mathbf{r}\,' \, \rho(\mathbf{r})\, \rho(\mathbf{r}\,') f(\mathbf{r}\, ,\mathbf{r}\,')$
    where $f(\mathbf{r}\, , \mathbf{r}\,') $ is the Mayer overlap function: $f=0$ except for the overlap region of the two objects, where $f=-1$

  • Try the ansatz $\rho(\mathbf{r}) = \bar{\rho} ( 1 + a\, cos kz )$ to detect a periodic density profile

  • Variation of the excess free energy density:
    $\delta_{2} \phi_{ex} = ( a^{2} \bar{\rho}^{\,2}/4) \, I(k) $ where $I(k) = \int_{\textstyle v_{exc}} d\mathbf{r} \, cos kz$

  • Adding the variation of the ideal gas free energy density $ \delta_{2} \phi_{id} = a^{2}/4 $ we find
    $\delta_{2} \phi = ( a^{2}/4 ) \left[ 1+\bar{\rho} I(k) \right] = (a^{2}/4) \left[ 1+ \eta I(k) / v \right]$
    where $\eta=\bar{\rho}v$ is the packing fraction

  • If at some $\eta = \eta_{s}$ and $k=k_{s}$ the term $\left[ 1+ \eta I(k) / v \right]$ crosses zero, the homogeneous (nematic) phase becomes unstable: $\Rightarrow$ smectic!
Prediction of transition density, 2nd Virial Approximation:

$\eta_{s} = - v / I(k_{s})$, where $k_{s}$ minimizes $I(k)= \int_{\textstyle v_{exc}} d\mathbf{r} \, cos kz $
$\lambda_{s} \equiv 2 \pi / k_{s}$ is the layer distance


Parsons-Lee correction:
  • In the expression $\left[ 1+ \eta I(k) / v \, \right]$ replace $\eta$ with the Carnahan-Starling term $\chi(\eta) \equiv (\eta-3\eta^{2}/4)/(1-\eta)^{2}$ and require that $\chi(\eta_{s}) I(k)/v = -1$
Prediction of transition density, Parsons-Lee:

$\eta_{s}=\left[(2w-1)-\sqrt{1-w} \right]/(2w-3/2)$,  with $w \equiv v/I(k)$


$\Rightarrow$ Central task: Calculation of $I(k)$


CALCULATE I(k)

Calculation of $I(k)$

For parallel particles the excluded volume is again a spheroellipsoid, with axes $A=2 a$, $C=2 c$ and also $Z_{0}=2 z_{0}$, $Z_{c}=2 z_{c}$ etc.

$I(k)=I_{body}(k)+2 I_{cap}(k)$

$I_{body}(k)= 2 \pi A^{2} C \left( 1- Z_{0}^{2}/C^{2} \right) sin\, kZ_{0}/kC +4 \pi A^{2} C \, (sin \,kZ_{0}-kZ_{0} \, cos\, kZ_{0})/(kC)^{3} $

$ I_{cap}(k) \equiv \pi \int_{Z_{c}+\Delta}^{Z_{c}+R_{c}} dz \, [ R_{c}^{2}-\left(z-Z_{c} \right)^{2} ] \, cos \, kz =\pi \, K_{1}\,cos \, kZ_{c} -\pi k K_{2}\,( sin \, kZ_{c}/k) , $

where $\Delta \equiv Z_{0}-Z_{c}$ and

$ K_{1} \equiv \int_{\Delta}^{R_{c}}dz \, \left( R_{c}^{2}-z^{2} \right) \, cos \,kz $
$\qquad = 2\, ( sin \, kR_{c}-kR_{c} \, cos \, kR_{c})/k^{3} - 2\, ( sin \, k\Delta-k\Delta \, cos\, k\Delta)/k^{3} - \left( R_{c}^{2} - \Delta^{2} \right) \,sin \, k \Delta /k $

$ k \, K_{2} \equiv \, k \, \int_{\Delta}^{R_{c}}dz \, ( R_{c}^{2}-z^{2} ) \, sin \, kz $
$= - 2\, ( R_{c} \, sin \, kR_{c}-\Delta \, sin \, k \Delta )/k + ( R_{c}^{2} \, cos \, k R_{c} - \Delta^{2} \, cos \, k\Delta )- $
$\qquad \qquad \qquad\qquad - 2\, ( cos \, kR_{c}- cos \, k\Delta )/k^{2} - R_{c}^{2} \, ( cos \, kR_{c} - cos \,k \Delta ) $

All terms in these expressions are well-behaved when $k \rightarrow 0$


$I(k)$ for two spheroellipsoids with aspect ratio $l/a=4$

red: $(c/a, z_{0}/a)=(4.320, \, 3.612)$

green: $(c/a, z_{0}/a)=(10.000, \,3.079)$


DFT RESULTS

Results of DFT

Single Aspect Ratio:

For fixed $l/a=4$ we vary $c/a$ (with the respective $z_{0}/a$), and determine the packing density at the N-S transition.
Aspect ratio $l/a=4$:
$\lambda/2l$ ... layer distance;
$\eta_{cp}$ ... close packing density
$\eta_{s}$ ... transition density
Dotted: true spherocylinders
How can DFT stability analysis predict smecticity?
  • Experience shows that a nematic-smectic transition occurs around $\eta^{*}\equiv\eta_{s}/\eta_{cp} \approx 0.35 - 0.46$
  • If the instability of the nematic (z-homogeneous) phase occurs at $\eta^{*} > 0.5$, this indicates a crystalline (not smectic) phase
  • Hence we choose the limit for acceptable transition densities $\eta^{*}=0.5$
  • In the Figure above a sequence of shapes with $\lambda/a=4$ is scanned; $c/a=4$: ellipsoid; $c/a \geq 10$: spherocylinder (almost)
  • N-Sm Transition: $(c/a)_{crit}=6.457$, with $z_{0}/a=3.205$
All Aspect Ratios:
Magenta: dividing line between smectogenic and non-smectogenic spheroellipsoids

Blue lines connect shapes with equal volumes

Green lines connect shapes with equal aspect ratios
  • The magenta line separates particles that can develop a smectic phase and those that can not
  • Left: "ellipsoid-like" particles with no smectic phase
    Right: "spherocylinder-like" shapes that may undergo a smectic transition
  • Example: $(c/a, z_{0}/a)= (12.0, 3.054)$...almost spherocylindrical, with $l/a=4$; $\eta^{*}=0.422$ (near to the SC value of $0.386$). Keeping the aspect ratio constant but decreasing $c/a$ we find that the $\eta^{*}=0.5$ limit is reached around $(c/a, z_{0}/a)= (6.46, 3.21)$. For smaller $c/a$, the particles are too "ellipsoidal" to display a smectic phase
  • $\Rightarrow$ Simulations!


OVERLAP CRITERION

Overlap Criterion for Two Spheroellipsoids

Two discoellipses in arbitrary configuration.
Red: "Bridge curve" according to Perram and Wertheim.

The "plummet point" (blue) provides an overlap criterion.
A. Shape Potential
  • Ellipsoid surface:
    $\sigma_{A}^{ell} (\mathbf{r})\equiv (\mathbf{r}-\mathbf{r}_{A})' \cdot \mathbf{A} \cdot (\mathbf{r}-\mathbf{r}_{A})-1 = 0$  with $\mathbf{A} = \mathbf{R}^{-1} \cdot \mathbf{A}_{0} \cdot \mathbf{R}$
    where $\mathbf{R}$ is a rotation matrix, and $\mathbf{A}_{0}$ the unrotated ellipsoid matrix

  • Spherical surface around $\mathbf{r}_{c}^{\pm}=\mathbf{r}_A \pm z_c \mathbf{c}_{A}\,$:
    $\sigma_{A}^{cap}(\mathbf{r}) \equiv (\mathbf{r}-\mathbf{r}_{c}^{\pm})' \cdot \mathbf{C} \cdot (\mathbf{r}-\mathbf{r}_{c}^{\pm})-1=0$ with $\mathbf{C} = (1/r_{c}^{2}) \, \mathbf{I}$
    ( $\mathbf{c}_{A}$ is a unit vector along the positive long semiaxis of $A$ )

  • Spheroellipsoid:
    $\sigma_{A}(\mathbf{r}) = (\mathbf{r}-\mathbf{r}_{A})' \cdot \mathbf{A} \cdot (\mathbf{r}-\mathbf{r}_{A})-1 \qquad {\rm if\; } \; \left| s_{A}(\mathbf{r}) \right| \equiv \left| \, \mathbf{c}_{A} \cdot (\mathbf{r}-\mathbf{r}_{A}) \, \right| < z_{0} $
    $ \qquad \;\;\; = (\mathbf{r}-\mathbf{r}_{c}^{\pm})' \cdot \mathbf{C} \cdot (\mathbf{r}-\mathbf{r}_{c}^{\pm})-1 \qquad {\rm if\; } \; \left| s_{A}(\mathbf{r}) \right| \geq z_{0} $

  • Shape Potential:
    The potential function $\sigma_{A}(\mathbf{r})$ is well-defined everywhere. The equipotential surface $\sigma_{A}(\mathbf{r})=0$ is continuous, others are not: $\Rightarrow$ Multiply $\sigma_{A}^{cap}$ by the factor $\gamma \equiv \left[\, |\nabla \sigma_{A}^{ell} |/|\nabla \sigma_{A}^{cap} | \,\right]_{z=z_{0}} = r_{c}^{2}/a^{2}$

    Shape potential for Spheroellipsoids:

    $ \sigma_{A}(\mathbf{r}) = (\mathbf{r}-\mathbf{r}_{A})' \cdot \mathbf{A} \cdot (\mathbf{r}-\mathbf{r}_{A})-1 \qquad \; {\rm if\; } \; \left| s_{A}(\mathbf{r}) \right| < z_{0} $
    $ \qquad \;\;\; \gamma \, \left[\, (\mathbf{r}-\mathbf{r}_{c}^{\pm})' \cdot \mathbf{C} \cdot (\mathbf{r}-\mathbf{r}_{c}^{\pm})-1 \, \right] \;\;\;\; {\rm else} $

    with the local gradient $\mathbf{g}_{A}(\mathbf{r}) \equiv \nabla \sigma_{A}(\mathbf{r})$:

    $ \mathbf{g}_{A}(\mathbf{r}) = 2 \, \mathbf{A} \cdot (\mathbf{r}-\mathbf{r}_{A}) \;\;\;\;\;\;\;\; {\rm if\; } \left| s_{A}(\mathbf{r}) \right| < z_{0} $
    $ \qquad \;\;\; = 2 \, \gamma \, \mathbf{C} \cdot (\mathbf{r}-\mathbf{r}_{c}) \;\;\;\;\;\; {\rm else} $

  • Properties of $\sigma_{A}(\mathbf{r}) $:
    • Values of $\sigma_{A}$ vary between $-1$ at the particle center and $\rightarrow \infty$ at large distances
    • $\sigma_{A}(\mathbf{r}) > 0 \qquad {\rm if} \;\; \mathbf{r}$ outside of $A$
    • $\sigma_{A}(\mathbf{r}) < 0 \qquad {\rm if} \;\; \mathbf{r}$ inside the spheroellipsoid
    • All equipotential surfaces $\sigma_{A}(\mathbf{r})=s$ are smooth

B. Contact function (Perram & Wertheim):

Given two spheroellipsoids $A$, $B$, define the Contact Function

$F(\mathbf{r},\lambda) \equiv \lambda \sigma_{A}(\mathbf{r}) + (1-\lambda) \, \sigma_{B}(\mathbf{r})$   with $\lambda \, \epsilon \, [0,1]$

For each value of $\lambda $ there is a unique Bridge Point $\mathbf{r}_{b}$ where $F(\mathbf{r},\lambda)$ is minimal, i.e.

$\lambda \, \mathbf{g}_{A}(\mathbf{r}_{b})+(1-\lambda) \mathbf{g}_{B}(\mathbf{r}_{b}) =0$

Recalling the possible expressions for $\mathbf{g}_{A,B}$ we find that the following cases may occur:

$ \mathbf{r}_{b}(\lambda)= \lambda \mathbf{r}_{c,A}^{\pm}+(1-\lambda) \mathbf{r}_{c,B}^{\pm} $ if $ \; \left| s_{A}(\mathbf{r}_{b}) \right| \geq z_{0} $ and
$ \;\;\; \left| s_{B}(\mathbf{r}_{b}) \right| \geq z_{0} $
$ \mathbf{r}_{b}(\lambda) = [\lambda \mathbf{A}+(1-\lambda) \mathbf{B}\,]^{-1} \cdot [\lambda \mathbf{A} \cdot \mathbf{r}_{A}+(1-\lambda)\mathbf{B} \cdot \mathbf{r}_{B}\,] $ if $ \; \left| s_{A}(\mathbf{r}_{b}) \right| < z_{0} $ and
$ \;\;\; \left| s_{B}(\mathbf{r}_{b}) \right| < z_{0} $
$ \mathbf{r}_{b}(\lambda) = [\lambda \mathbf{A}+(1-\lambda) (\gamma / r_{c}^{2}) \mathbf{I}\,]^{-1} \cdot [\lambda \mathbf{A} \cdot \mathbf{r}_{A}+(1-\lambda) (\gamma / r_{c}^{2} ) \mathbf{r}_{c,B}^{\pm}] $ if $ \; \left| s_{A}(\mathbf{r}_{b}) \right| < z_{0} $ and
$ \;\;\; \left| s_{B}(\mathbf{r}_{b}) \right| \geq z_{0} $
or vice versa (A $\leftrightarrow$ B)


C. Overlap criterion:

The bridge points $\mathbf{r}_{b}(\lambda)$ trace a curved path between the centers of $A$ and $B$; see Figure (above) for an example in two dimensions.
  • Intersect of the bridge curve with the surface of $A$ to find the "plummet point" $\mathbf{r}_{p}$ (drawn in blue): use Newton-Raphson to find $\tilde{\lambda} : \sigma_{A}(\mathbf{r}(\tilde{\lambda}))=0$.   The required Newton-Raphson derivative is given by $ D \equiv $ $ d\sigma_{A}(\mathbf{r}_{b}(\lambda))/d\lambda $ $= \mathbf{g}_{A}(\mathbf{r}_{b}) \cdot d\mathbf{r}_{b}/d\lambda\, $

  • A and B overlap if and only if $\sigma_{B}(\mathbf{r}_{p}) < 0 \,$ $ \; \Leftarrow \;$ CRITERION



CONCLUSIONS



Conclusions
  • Versatile model for a large group of elongated convex particles

  • Various shapes achieved by changing only two parameters, $c/a$ and $z_{0}/a$

  • Explore the large variation of mesogenic properties over this class of particles, using only two parameters

  • For parallel spheroellipsoids, we have derived a tentative dividing line between smectogenic and non-smectogenic particle shapes

  • For MC simulations and DFT of freely reorienting spheroellipsoids we have derived a fast overlap detection procedure





vesely sep-2014