Franz J. Vesely > Lectures > LJ Sticks 
 

 
RETURN




 
< >




  LENNARD-JONES LINES?


 
  • Definition:
    Consider two lines of finite length $L$ containing a homogeneous density of LJ centers. Let $\vec{e}_{1,2}$ be the direction vectors, $\vec{r}_{12}$ the vector between the centers of the two line segments, and $\lambda, \, \mu$ parameters giving the positions of the interacting points along $1$ and $2$. The squared distance between any two such points is given by $r^{2}= \left| r_{12}+\mu \vec{e}_{2}-\lambda \vec{e}_{1} \right|^{2}$. The total interaction energy between the two lines is then

    $ u(\vec{r}_{12},\vec{e}_{1},\vec{e}_{2}) = \frac{\textstyle 1}{\textstyle L^{2}} \int \limits_{1} d\lambda \int \limits_{2} d\mu \, \, u_{LJ} ( r ) $

    with $u_{LJ}(r)=4 \,(r^{-12}-r^{-6})$.
 
Let's try:
  • At fixed $\lambda$ the ($r^{-6}$) integral over $\mu$ is
    $ I^{-}(\vec{r}_{12},\vec{e}_{1},\vec{e}_{2},\lambda) = \int \limits_{-h}^{h}d\mu \, \left| r_{12}+\mu \vec{e}_{2}-\lambda \vec{e}_{1} \right|^{-6} $
    where $h$ is the half length of the stick.

  • Find the "proxy points" of shortest relative distance $r_{0}$ on the two carrier lines.

  • Using new parameters $\gamma$, $\delta$ originating at the proxy points we have
    $ I^{-}(\gamma) = \int \limits_{\delta_{a}}^{\delta_{b}}d\delta \, \left[ \delta^{2}+p \delta + q^{2} \right]^{-3} $
    where $\delta_{b,a}=-\mu_{0} \pm h$, $p=-2 \gamma \rho$, and $q^{2}=\gamma^{2}+r_{0}^{2}$; the correlation $\rho$ is just the scalar product of the direction vectors, $ \rho = e_{1} \cdot e_{2}$.

  • There is in fact an analytic solution to this:
    $ \begin{eqnarray} I^{-}(\gamma) &=& \left[ 3 \, \frac{p+2\delta}{(4q^{2}-p^{2})^{2}[q^{2}+\delta(p+\delta)]} +\frac{1}{2} \, \frac{p+2\delta}{(4q^{2}-p^{2})[q^{2}+\delta(p+\delta)]^{2}} \right. \\ && \left. +\frac{12}{(4q^{2}-p^{2})^{5/2}} \arctan \frac{p+2\delta}{(4q^{2}-p^{2})^{1/2}} \right]_{\delta=\delta_{a}}^{\delta=\delta_{b}} \end{eqnarray} $

  • However, the second integration in

    $ I^{\pm} \equiv \int \limits_{\gamma_{a}}^{\gamma_{b}} d\gamma \, I^{\pm}(\gamma) $

    with $\gamma_{b,a}=-\lambda_{0} \pm h$ can in general not be performed in closed form.



    This is what happens when we try ...   click to enlarge
     
    But then again...   click to enlarge
    (Thanks to J. Auersperg)
< >

vesely nov-2006