Franz J. Vesely > Lectures > LJ Sticks 
 

 
<

 


The Gay-Berne Potential

Positions: $\vec{r}_{i}$, $\vec{r}_{j}$;     directions: $\vec{u}_{i}$, $\vec{u}_{j}$;
width: $\sigma_{s}=\sigma_{0}$ (side-by-side);     length: $\sigma_{e}$ (end-to-end).
interparticle vector: $\vec{r} \equiv \vec{r}_{ij} \equiv \vec{r}_{j}-\vec{r}_{i}$   with $r \equiv |\vec{r}|$;    $ \vec{s} \equiv \vec{r}/r$;

Then
$ U\left(\vec{u}_{i},\vec{u}_{j},\vec{r}\right) =4 \epsilon \left(\vec{u}_{i},\vec{u}_{j},\vec{s}\right) \left\{ \left[ \frac{\textstyle \sigma_{0}}{\textstyle r-\sigma\left(\vec{u}_{i},\vec{u}_{j},\vec{s}\right)+\sigma_{0}} \right]^{12} - \left[ \frac{\textstyle \sigma_{0}}{\textstyle r-\sigma\left(\vec{u}_{i},\vec{u}_{j},\vec{s}\right)+\sigma_{0}} \right]^{6} \right\} $


where the generalized diameter and well depth parameters are given by

$ \sigma(\vec{u}_{i},\vec{u}_{j},\vec{s})= \sigma_{0} \left/ \sqrt{1-\frac{\textstyle \chi}{\textstyle 2} \left\{\frac{\textstyle \left[\vec{s}\cdot \left(\vec{u}_{i}+\vec{u}_{j}\right) \right]^{2}}{\textstyle 1+\chi \left( \vec{u}_{i}\cdot \vec{u}_{j} \right)} + \frac{\textstyle \left[\vec{s}\cdot \left(\vec{u}_{i}-\vec{u}_{j}\right) \right]^{2}}{\textstyle 1-\chi \left( \vec{u}_{i}\cdot \vec{u}_{j} \right)} \right\} } \right. $

and
$ \epsilon(\vec{u}_{i},\vec{u}_{j},\vec{s})= \epsilon_{0} \epsilon^{\nu}(\vec{u}_{i},\vec{u}_{j}) \epsilon'^{\mu}(\vec{u}_{i},\vec{u}_{j},\vec{s}) $

with
$ \epsilon(\vec{u}_{i},\vec{u}_{j}) = 1 \left/ \sqrt{ 1-\chi^{2} \; \left( \vec{u}_{i}\cdot\vec{u}_{j}\right)^{2} } \right. $


$ \epsilon'(\vec{u}_{i},\vec{u}_{j},\vec{s})= 1-\frac{\textstyle \chi'}{\textstyle 2} \left\{ \frac{\textstyle \left[\vec{s}\cdot \left(\vec{u}_{i}+\vec{u}_{j}\right) \right]^{2}}{\textstyle 1+\chi' \left( \vec{u}_{i}\cdot \vec{u}_{j} \right)} +\frac{\textstyle \left[\vec{s}\cdot \left(\vec{u}_{i}-\vec{u}_{j}\right) \right]^{2}}{\textstyle 1-\chi' \left( \vec{u}_{i}\cdot \vec{u}_{j} \right)} \right\} $

and
$ \chi =\frac{\textstyle (\sigma_{e}/\sigma_{s})^{2}-1}{\textstyle (\sigma_{e}/\sigma_{s})^{2}+1} \;\; , \;\;\;\;\;\;\;\;\;\; \chi'=\frac{\textstyle 1-(\epsilon_{e}/\epsilon_{s})^{\textstyle 1/\mu}}{\textstyle 1+(\epsilon_{e}/\epsilon_{s})^{\textstyle 1/\mu}} $

A widely studied system is defined by the length-to-width ratio $\sigma_{e}/\sigma_{s} = 3$. In this case the usual choice for the parameters $\mu$, $\nu$ and $\epsilon_{e}/\epsilon_{s}$ is

$ \mu=2, \;\;\;\;\;\; \nu=1,\;\;\;\;\;\; \epsilon_{e}/\epsilon_{s}=1/5 $

It should be noted that these parameters were identified by an optimal fit to a site-site potential in which 4 LJ centers were placed along a line at distances $2 \sigma_{0}/3$; in other words, the distance between the outer LJ centers was $2 \sigma_{0}$.

For molecules of other l/w ratios other choices of the parameters would be appropriate. However, model simulations are often done with the same $\mu,\nu$, and even $\epsilon_{e}/\epsilon_{s}$


<

vesely nov-2006