next up previous
Next: Bibliography Up: Density Functional Theory for Previous: 4.3 Outlook


5. Appendix 1: Proof of $\rho_{eq}(\vec{r})=- \delta \Omega [u]/\delta u(\vec{r})$

Grand Partition Function:
\begin{displaymath}
\Xi=
\sum_{N=0}^{\infty} \frac{z^{N}}{N!}
\int d\vec{1}..d\v...
...\vec{j})}
e^{\textstyle -\beta \sum_{j=1}^{N}\sum_{k>j}u(jk)}
\end{displaymath} (5.1)



Let us write the external and internal Boltzmann factors as
\begin{displaymath}
B^{ex}(1..N) \equiv e^{\textstyle -\beta \sum_{j=1}^{N}\phi(...
....N) \equiv e^{\textstyle -\beta \sum_{j=1}^{N}\sum_{k>j}u(jk)}
\end{displaymath} (5.2)

Then
\begin{displaymath}
\Xi=
\sum_{N=0}^{\infty} \frac{z^{N}}{N!}
\int d\vec{1}..d\vec{N} \;
B^{ex}(1..N) \; B^{in}(1..N)
\end{displaymath} (5.3)

Grand Potential:
\begin{displaymath}
\Omega [\phi] \equiv -kT \; \ln \Xi
\end{displaymath} (5.4)

Varying the external potential according to $\phi$ $\Longrightarrow$ $\phi+\delta \phi$ we find
    $\displaystyle \Omega [\phi+\delta \phi] =$ (5.5)
  $\textstyle =$ $\displaystyle -kT \;\ln
\sum_{N=0}^{\infty} \frac{z^{N}}{N!}
\int d\vec{1}..d\v...
...extstyle -\beta \sum_{j=1}^{N}\delta\phi(\vec{j})}
B^{ex}(1..N) \; B^{in}(1..N)$ (5.6)
  $\textstyle \approx$ $\displaystyle -kT \;\ln
\sum_{N=0}^{\infty} \frac{z^{N}}{N!}
\int d\vec{1}..d\v...
...[1-\beta \sum_{j=1}^{N}\delta \phi(\vec{j})\right]
B^{ex}(1..N) \; B^{in}(1..N)$ (5.7)
  $\textstyle =$ $\displaystyle -kT \;\ln \Xi -kT \; \ln
\left\{
1- \frac{\beta}{\Xi} 
\sum_{N=0...
...N}\;
\sum_{j=1}^{N}\delta \phi(\vec{j}) 
B^{ex}(1..N) \; B^{in}(1..N)
\right\}$ (5.8)
  $\textstyle \equiv$ $\displaystyle \Omega + \delta \Omega$ (5.9)

It follows that
\begin{displaymath}
\delta \Omega = \frac{z}{\Xi}
\sum_{N=1}^{\infty} \frac{z^{N...
...le -\beta \sum_{k>1}u(1k)}\right)
B^{ex}(2..N) \; B^{in}(2..N)
\end{displaymath} (5.10)

On the other hand,
$\displaystyle \rho(\vec{r})$ $\textstyle \equiv$ $\displaystyle \langle \hat{\rho}(\vec{r})\rangle_{ens}
= \langle \sum_{i} \delta (\vec{r}-\vec{i}) \rangle_{ens}$  
  $\textstyle =$ $\displaystyle \sum_{N=0}^{\infty} \frac{z^{N}}{N!} \; \frac{1}{\Xi}
\int d\vec{...
...ec{N} \; \sum_{i=1}^{N} \;
\delta(\vec{r}-\vec{i})
B^{ex}(1..N) \; B^{in}(1..N)$  
  $\textstyle =$ $\displaystyle \frac{z}{\Xi}
\sum_{N=1}^{\infty} \frac{z^{N-1}}{(N-1)!} \;
\int ...
...style -\beta \sum_{k>1}u(\vec{r},\vec{k})}
\right)
B^{ex}(2..N) \; B^{in}(2..N)$ (5.11)

Therefore
\begin{displaymath}
\int d\vec{r} \; \rho(\vec{r})   \delta \phi(\vec{r})
= \delta \Omega
\end{displaymath} (5.12)

Since $u(\vec{r}) \equiv \mu - \phi(\vec{r})$ we have
\begin{displaymath}
\rho_{eq}(\vec{r})= - \frac{\delta \Omega [u]}{\delta u(\vec{r})}
\end{displaymath} (5.13)

q.e.d.

Back to text $\Longrightarrow$1.2
next up previous
Next: Bibliography Up: Density Functional Theory for Previous: 4.3 Outlook
Franz J. Vesely Oct 2001
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001