next up previous
Next: 4. Application to Liquid Up: 3. Approximations to Previous: 3.2 Square Gradient Approximation


3.3 Weighted density Approximations (WDA)

LDA and SGA must fail if the local density can achieve high values. For example, near a wall one may find density amplitudes in excess of homogeneous dense packing.

In such cases it is best to smear out the density over a small spatial region, using a suitable weighting function:

\begin{displaymath}
{\rm\cal{F}}_{ex} [\rho ] =
\int d\vec{r}   \rho(\vec{r}) \Psi_{ex}(\bar{\rho}(\vec{r}))
\end{displaymath} (3.6)

where $\bar{\rho}(\vec{r})$ denotes the coarse-grained, or smoothed, or weighted density.

Various authors have contributed their specific recipes.

$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knot_1.ps}
}$Nordholm and Tarazona I:

$\displaystyle {\rm\cal{F}}_{ex} [\rho ]$ $\textstyle =$ $\displaystyle \int d\vec{r}   \rho(\vec{r}) \Psi_{ex}(\bar{\rho}(\vec{r}))$ (3.7)
$\displaystyle \bar{\rho}(\vec{r})$ $\textstyle =$ $\displaystyle \int d \vec{r'}   w_{0}(\vert\vec{r}-\vec{r'}\vert)
\rho(\vec{r'})$ (3.8)
$\displaystyle w_{0}$ $\textstyle =$ $\displaystyle \frac{3}{4 \pi \sigma^{3}} \Theta(\sigma-r)$ (3.9)


For the excess free energy density NORDHOLM uses the excluded volume approximation

\begin{displaymath}
\beta \Psi_{ex}(\rho) = - \ln (1-\rho v_{0})
\end{displaymath} (3.10)

where $v_{0}=\sigma^{3}$ for hard spheres with diameter $\sigma$. An improvement introduced by TARAZONA is the use of the Carnahan-Starling approximation
\begin{displaymath}
\beta \Psi_{ex}(\rho) = \frac{\eta (4-3 \eta)}{(1-\eta)^{2}}
\;\;\; {\rm with}\;\;
\eta \equiv \frac{\pi \rho \sigma^{3}}{6}
\end{displaymath} (3.11)



$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knot_2.ps}
}$Tarazona II:

$\displaystyle {\rm\cal{F}}_{ex} [\rho ]$ $\textstyle =$ $\displaystyle \int d\vec{r}   \rho(\vec{r}) \Psi_{ex}(\bar{\rho}(\vec{r}))$ (3.12)
$\displaystyle \bar{\rho}(\vec{r})$ $\textstyle =$ $\displaystyle \int d \vec{r'}  
w(\vert\vec{r}-\vec{r'}\vert;\bar{\rho}(\vec{r}))\rho(\vec{r'})$ (3.13)
$\displaystyle w(r;\rho)$ $\textstyle =$ $\displaystyle w_{0}(r)+w_{1}(r) \rho + w_{2}(r) \rho^{2}$ (3.14)

where $w_{0,1}$ is taken from a virial expansion of $c_{HS}^{(2)}(r;\rho)$, and $w_{2}$ from a fit to the PY solution.

$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knot_3.ps}
}$Curtin-Ashcroft:

Similar to Tarazona II but with more effort regarding $w(r,\rho)$:

$\displaystyle {\rm\cal{F}}_{ex} [\rho ]$ $\textstyle =$ $\displaystyle \int d\vec{r}   \rho(\vec{r}) \Psi_{ex}(\bar{\rho}(\vec{r}))$ (3.15)
$\displaystyle \bar{\rho}(\vec{r})$ $\textstyle =$ $\displaystyle \int d \vec{r'}  
w(\vert\vec{r}-\vec{r'}\vert;\bar{\rho}(\vec{r}))\rho(\vec{r'})$ (3.16)

and $w(r;\rho)$ such that with
\begin{displaymath}
c_{HS}^{(2)}(r;\rho) =
-\beta \delta^{2}{\rm\cal F}_{ex} / \delta \rho(\vec{r}_{1})
\delta \rho(\vec{r}_{2})
\end{displaymath} (3.17)

it will produce the known pcf at all (homogeneous) densities.

Differenciating ${\rm\cal {F}}_{ex}[\rho ]$ twice by the argument $\rho$ one obtains

$\displaystyle -\frac{1}{\beta}   c^{(2)}(\rho;12)$ $\textstyle =$ $\displaystyle 2   \Psi_{ex}'(\rho)w(12;\rho)
+\rho \Psi_{ex}''(\rho) \int d\vec{3}   w(13;\rho)w(32;\rho)$  
  $\textstyle +$ $\displaystyle \rho \Psi_{ex}'(\rho) \int d\vec{3}  
\left[ w'(13;\rho)w(32;\rho)+w(13;\rho)w'(32;\rho) \right]$ (3.18)

Various solution methods are possible. The standard procedure starts from a Fourier transform of this equation:
\begin{displaymath}
-\frac{1}{\beta}   c_{k}^{(2)}(\rho)=
2   \Psi_{ex}'(\rho)w_{k}(\rho)
\left[ \Psi'_{ex}(\rho) w_{k}^{2}(\rho) \right]
\end{displaymath} (3.19)

For given $c_{k}^{(2)}(\rho)$ (e. g. from Percus-Yevick) this equation may be solved numerically for $w(r;\rho)$.

DENTON and ASHCROFT generalized this procedure to mixtures.

$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knot_4.ps}
}$Meister-Kroll; Groot-v.d. Eerden:
Let $\rho_{0}(\vec{r})$ be a ``coarse-grained'', slowly varying reference density. Expanding ${\rm\cal {F}}_{ex}[\rho ]$ around this reference density one finds

$\displaystyle {\rm\cal{F}}_{ex} [\rho ]$ $\textstyle =$ $\displaystyle \int d\vec{r}   \rho(\vec{r}) \Psi_{ex}(\rho_{0}(\vec{r}))$ (3.20)
  $\textstyle -$ $\displaystyle \beta^{-1} \int d \vec{r} \int d \vec{r'}
\rho(\vec{r}) L(\rho_{0}(\vec{r}); \vert\vec{r}-\vec{r'}\vert)
(\rho(\vec{r'})-\rho_{0}(\vec{r}))$ (3.21)

with
\begin{displaymath}
L(\rho_{0}(\vec{r}); \vert\vec{r}-\vec{r'}\vert)
= \int_{0}^...
...c^{(2)}
(\alpha \rho_{0}(\vec{r}); \vert\vec{r}-\vec{r'}\vert)
\end{displaymath} (3.22)

and
\begin{displaymath}
\rho_{0}(\vec{r}) = \int d \vec{r'}  
w(\vert\vec{r}-\vec{r'}\vert;\rho_{0}(\vec{r}))\rho(\vec{r'})
\end{displaymath} (3.23)


\begin{displaymath}
w(\vert\vec{r}-\vec{r'}\vert;\rho_{0}(\vec{r}))
\equiv
\frac...
...vec{r});\vert\vec{r}-\vec{r'}\vert)}{L_{0}(\rho_{0}(\vec{r}))}
\end{displaymath} (3.24)



$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knot_5.ps}
}$Percus; Robledo-Varea:

Starting from equ. 2.15 we write

\begin{displaymath}
{\rm\cal{F}}_{ex} [\rho ] =
\int d\vec{r}   \rho_{\sigma}(\vec{r}) \Psi_{ex}(\rho_{\tau}(\vec{r}))
\end{displaymath} (3.25)

where now $\rho_{\sigma}$ and $\rho_{\tau}$ are suitably averaged densities:
$\displaystyle \rho_{\sigma}(\vec{r})$ $\textstyle =$ $\displaystyle \int d\vec{r}' \; \tilde{\sigma}(\vec{r}-\vec{r}')\; \rho(\vec{r}')$ (3.26)
$\displaystyle \rho_{\tau}(\vec{r})$ $\textstyle =$ $\displaystyle \int d\vec{r}' \; \tau(\vec{r}-\vec{r}')\; \rho(\vec{r}')$ (3.27)

For the weighting functions $\tau$ und $\sigma$ Robledo and Varea suggest:
$\displaystyle \tau(\vec{r})$ $\textstyle =$ $\displaystyle \frac{\Theta(\sigma/2-\vert\vec{r}\vert)}{\pi \sigma^{3}/6}$ (3.28)
$\displaystyle \tilde{\sigma}(\vec{r})$ $\textstyle =$ $\displaystyle \frac{\delta(\sigma/2-\vert\vec{r}\vert)}{\pi \sigma^{2}}$ (3.29)

(Note that for the Tonks gas we have exactly $\tau(z)=\Theta(\sigma/2-\vert z\vert)/\sigma$ and $\tilde{\sigma}(z)=\delta(\sigma/2-\vert z\vert)/2$.)

$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knot_6.ps}
}$Rosenfeld; Kierling-Rosinberg:

Rosenfeld studied mixtures of hard spheres with radii $R_{i}$. We restrict the discussion to one HS species, using the subsequently introduced formulation of Kierling und Rosinberg.

On the basis of geometric (overlap volume) consideration the following representation may be derived:

\begin{displaymath}
\beta {\rm\cal{F}}_{ex} [\{\rho(\vec{r})\} ]=
\int d\vec{r}\; \Phi(\{n_{\alpha}(\vec{r})\})
\end{displaymath} (3.30)

where $n_{\alpha}$ are several averaged densities:
\begin{displaymath}
n_{\alpha}(\vec{r}) = \int d\vec{r}' \; \rho(\vec{r}') 
\omega^{(\alpha)}(\vec{r}-\vec{r}')
\end{displaymath} (3.31)

For the weighting functions $\omega^{(\alpha)}$, $\alpha=0,1,2,3$ Kierlik-Rosinberg find
$\displaystyle \omega^{(3)}(r)$ $\textstyle =$ $\displaystyle \Theta (R-r)$ (3.32)
$\displaystyle \omega^{(2)}(r)$ $\textstyle =$ $\displaystyle \delta (R-r)$ (3.33)
$\displaystyle \omega^{(1)}(r)$ $\textstyle =$ $\displaystyle \frac{1}{8\pi}\delta'(R-r)$ (3.34)
$\displaystyle \omega^{(0)}(r)$ $\textstyle =$ $\displaystyle -\frac{1}{8\pi}\delta''(R-r)
+\frac{1}{2\pi r}\delta'(R-r)$ (3.35)

The choice of the quantities $\omega$ and the form of the function $\Phi$ follows from the requirement that in the homogeneous limit the PY equation is fulfilled:
\begin{displaymath}
\Phi(n_{0},n_{1},n_{2},n_{3}) = \Phi_{PY}=
-n_{0} \ln (1-n_{...
...c{n_{1}n_{2}}{1-n_{3}}
+\frac{n_{2}^{2}}{24 \pi (1-n_{3})^{2}}
\end{displaymath} (3.36)



$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knots_jf.ps}
}$WDA in Perspective:

The WDAs given above are mostly based on heuristic arguments. For the ansatz of Meister-Kroll and Groot-v.d. Eerden it was shown by Fischer et al. that it is equivalent to the systematically derived Yvon-Born-Green approximation.

$\textstyle \parbox{210pt}{
\includegraphics[width=180pt]{images/fischer_sok.ps}
}$



The application of various WDAs to the sample problem of hard spheres between two walls the following picrure emerges (from Evans 92):





$\textstyle \parbox{60pt}{
\includegraphics[width=54pt]{images/knot_7.ps}
}$Modified WDA:

Denton and Ashcroft suggested to apply a second averaging process to the ``weighted density'' $\bar{\rho}(\vec{r})$, this time averaging over the entire system. The resulting density $\hat{\rho}$ is then inserted in an expression for ${\rm\cal {F}}_{ex}[\rho ]$:

\begin{displaymath}
\frac{{\rm\cal{F}}_{ex} [\rho ]}{N} = \Psi_{ex}(\hat{\rho})
\end{displaymath} (3.37)

with
\begin{displaymath}
\hat{\rho} = \frac{1}{N} \int d\vec{r}\; \rho(\vec{r}) \;
\i...
... \rho(\vec{r}') \hat{w}(\vert\vec{r}-\vec{r}'\vert;\hat{\rho})
\end{displaymath} (3.38)

The function $\hat{w}$ is chosen such that the above equations reproduce the correct direct pcf $c^{(2)}(\rho;r)$:
\begin{displaymath}
\hat{w}(r;\rho)=-\frac{1}{2\Psi_{ex}'(\rho)}
\left[ kT \;c^{(2)}(\rho;r)+\frac{1}{V}\rho \Psi_{ex}''(\rho)\right]
\end{displaymath} (3.39)

If one uses the direct pcf and the free energy density $\Psi_{ex}$ according to Percus-Yevick the fluid-solid phase transition of hard spheres is well reproduced. Also, the enhomogeneous fluid density near a wall is well represented.

A similar ansatz is due to Lutsko and Baus. Their ``Generalized Effective Liquid Approximation'' (GELA) produces useful results at the freezing transition.

next up previous
Next: 4. Application to Liquid Up: 3. Approximations to Previous: 3.2 Square Gradient Approximation
Franz J. Vesely Oct 2001
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001