next up previous
Next: III. SELECTED APPLICATIONS Up: 5.3 Boundary Value Problems: Previous: 5.3.3 Fourier Transform Method


5.3.4 Cyclic Reduction (CR)

Again, consider

\begin{displaymath}
u_{k+1,l}-2u_{k,l}+ u_{k-1,l}
+u_{k,l+1}-2u_{k,l}+u_{k,l-1} = - \rho_{k,l} (\Delta l)^{2}
\end{displaymath}

Let the number of columns in the lattice be $M=2^{p}$, and define the column vectors

\begin{displaymath}
\mbox{$\bf u$}_{k} \equiv \{ u_{k,l} \, ; \; l=0, \dots N-1 \}^{T}
\,;\;\;\;k=0,\dots,M-1
\end{displaymath}

Then,
$\displaystyle \mbox{$\bf u$}_{k-1}$ $\textstyle +$ $\displaystyle \mbox{${\bf T}$} \cdot \mbox{$\bf u$}_{k} + \mbox{$\bf u$}_{k+1} =
- \mbox{$\bf\rho$}_{k} (\Delta l)^{2}$  

where
$\displaystyle \mbox{${\bf T}$}$ $\textstyle \equiv$ $\displaystyle \left(
\begin{array}{ccccc}
-2 & 1 & 0 & \dots & \\
1 &-2 & 1 & ...
...& 0 & \dots & \\
0 &2 & 0 & & \\
&\ddots &\ddots &\ddots &
\end{array}\right)$  
  $\textstyle =$ $\displaystyle \hspace{4.5em} \mbox{${\bf B}$} \hspace{5em} - \hspace{4em} 2 \,\mbox{${\bf I}$}$  

$\mbox{${\bf B}$}$ and $\mbox{${\bf T}$}$ are tridiagonal.
Now form linear combinations $[k-1]-\mbox{${\bf T}$} \cdot [k] + [k+1]$:

\begin{displaymath}
\mbox{$\bf u$}_{k-2} + \mbox{${\bf T}$}^{(1)} \cdot \mbox{$\...
...$\bf u$}_{k+2} =
- \mbox{$\bf\rho$}_{k}^{(1)} (\Delta l)^{2}
\end{displaymath}

with
$\displaystyle \mbox{${\bf T}$}^{(1)}$ $\textstyle \equiv$ $\displaystyle 2 \mbox{${\bf I}$} - \mbox{${\bf T}$}^{2}$  
$\displaystyle \mbox{$\bf\rho$}_{k}^{(1)}$ $\textstyle \equiv$ $\displaystyle \mbox{$\bf\rho$}_{k-1} - \mbox{${\bf T}$} \cdot \mbox{$\bf\rho$}_{k}
+\mbox{$\bf\rho$}_{k+1}$  

The ``reduced'' equation has the same form as before, except that only every other vector $\mbox{$\bf u$}_{k}$ appears in it.
$\Longrightarrow$Iterate until

\begin{displaymath}
\mbox{$\bf u$}_{0} + \mbox{${\bf T}$}^{(p)} \cdot \mbox{$\bf...
...$\bf u$}_{M} =
- \mbox{$\bf\rho$}_{M/2}^{(p)} (\Delta l)^{2}
\end{displaymath}

Now the vectors $\mbox{$\bf u$}_{0}$ and $\mbox{$\bf u$}_{M}$ are just the given boundary values $u_{0,l}$ and $u_{M,l}\,$ $(l=0,1, \dots N-1)$. The matrix $\mbox{${\bf T}$}^{(p)}$ is known since it arose from the $p\,$-fold iteration of the above combination rule. While $\mbox{${\bf T}$}^{(p)}$ is not tridiagonal any more, it may at least be represented by a $2^{p}$-fold product of tridiagonal matrices:

\begin{displaymath}
\mbox{${\bf T}$}^{(p)}=-\prod_{l=1}^{2^{p}} \left[ \mbox{${\bf T}$}-\beta_{l}\mbox{${\bf I}$} \right]
\end{displaymath}

with

\begin{displaymath}
\beta_{l}= 2 \cos\left[ \frac{2(l-1)\pi}{2^{p+1}}\right]
\end{displaymath}

$\Longrightarrow$Solve for the vector $\mbox{$\bf u$}_{M/2}$ by inverting $2^{p}$ tridiagonal systems of equations.

Now go back to ever more intermediate columns: compute $\mbox{$\bf u$}_{M/4}$ and $\mbox{$\bf u$}_{3M/4}$ follow from

$\displaystyle \mbox{$\bf u$}_{0} + \mbox{${\bf T}$}^{(p-1)} \cdot \mbox{$\bf u$}_{M/4} + \mbox{$\bf u$}_{M/2}$ $\textstyle =$ $\displaystyle - \mbox{$\bf\rho$}_{M/4}^{(p-1)} (\Delta l)^{2}$  
$\displaystyle \mbox{$\bf u$}_{M/2} + \mbox{${\bf T}$}^{(p-1)} \cdot \mbox{$\bf u$}_{3M/4} + \mbox{$\bf u$}_{M}$ $\textstyle =$ $\displaystyle - \mbox{$\bf\rho$}_{3M/4}^{p-1} (\Delta l)^{2}$  

and so on.

Lit. HOCKNEY: Combination of the CR technique and the Fourier transform method is superior to most other techniques for solving the potential equation. $\Longrightarrow$``FACR'' method (Fourier analysis and cyclic reduction): In place of the column vector $\mbox{$\bf u$}_{k} \equiv \{ u_{k,l};\,l=0, \dots N-1\}^{T}$ use its $N$ Fourier components,

\begin{displaymath}
U_{k}(n) \equiv \sum_{l=0}^{N-1} u_{k,l}
e^{2\pi i \, nl/N} \, ; \;\;(n=0, \dots N-1) \nonumber
\end{displaymath}

Details: see Hockney 1981, or Vesely 2001.
next up previous
Next: III. SELECTED APPLICATIONS Up: 5.3 Boundary Value Problems: Previous: 5.3.3 Fourier Transform Method
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001