next up previous
Next: 5.2.3 Crank-Nicholson Scheme (CN) Up: 5.2 Initial Value Problems Previous: 5.2.1 FTCS Scheme for


5.2.2 Implicit Scheme of First Order

Take the second spatial derivative at time $t_{n+1}$ instead of $t_{n}$:
$\displaystyle \frac{1}{\Delta t} \left[ u_{j}^{n+1}-u_{j}^{n}\right]$ $\textstyle =$ $\displaystyle \frac{\lambda}{(\Delta x)^{2}}
\left[ u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}\right]$  



\begin{figure}\includegraphics[width=120pt]{figures/f5imp.ps}
\end{figure}


Again defining $a \equiv \lambda \Delta t / (\Delta x)^{2}$, we find, for each space point $x_{j}$ $\;(j=1,2,..N-1)$,
    $\displaystyle \fbox{$ \displaystyle
-a u_{j-1}^{n+1}+(1+2a)u_{j}^{n+1}-a u_{j+1}^{n+1}=u_{j}^{n}
$}$  



Let the boundary values $u_{0}$ and $u_{N}$ be given; the set of equations may then be written as
$\displaystyle \mbox{${\bf A}$} \cdot \mbox{$\bf u$}^{n+1}$ $\textstyle =$ $\displaystyle \mbox{$\bf u$}^{n}$  

with
$\displaystyle \mbox{${\bf A}$}$ $\textstyle \equiv$ $\displaystyle \left(
\begin{array}{cccccc}
1 & 0 & 0 & . & . & 0 \\
-a & 1+2a ...
...& . \\
. & . & . & -a & 1+2a & -a \\
. & . & . & 0 & 0 & 1
\end{array}\right)$  



$\Longrightarrow$Solve by Recursion!

Stability:

We find
$\displaystyle g$ $\textstyle =$ $\displaystyle \frac{1}{1+4a\,\sin^{2}(k \Delta x/2)}$  

Since $\vert g\vert \leq 1$ under all circumstances, we have here an unconditionally stable algorithm!





EXERCISE: Apply the implicit technique to the thermal conduction problem discussed before. Consider the efficiency of the procedure as compared to FTCS. Relate the problem to the Wiener-Levy random walk.



next up previous
Next: 5.2.3 Crank-Nicholson Scheme (CN) Up: 5.2 Initial Value Problems Previous: 5.2.1 FTCS Scheme for
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001