next up previous
Next: 5.1.2 Lax Scheme Up: 5.1 Initial Value Problems Previous: 5.1 Initial Value Problems


5.1.1 FTCS Scheme; Stability Analysis

Writing $\mbox{$\bf u$}_{j}^{n} \equiv \mbox{$\bf u$}(x_{j},t_{n})$ and using DNGF for the time derivative (FT, ``forward-time''), and DST for the space derivative (CS, for ``centered-space''), we write $\partial \mbox{$\bf u$}/\partial t = - \partial \mbox{$\bf j$}/\partial x$ as
$\displaystyle \frac{1}{\Delta t} \left[ \mbox{$\bf u$}_{j}^{n+1}-\mbox{$\bf u$}_{j}^{n} \right]$ $\textstyle \approx$ $\displaystyle - \frac{1}{2\, \Delta x}
\left[ \mbox{$\bf j$}_{j+1}^{n}-\mbox{$\bf j$}_{j-1}^{n} \right]$  


    $\displaystyle \fbox{$ \displaystyle
\mbox{$\bf u$}_{j}^{n+1}= \mbox{$\bf u$}_{j...
... \Delta x}
\left[ \mbox{$\bf j$}_{j+1}^{n}-\mbox{$\bf j$}_{j-1}^{n} \right]
$
}$  



\begin{figure}\includegraphics[width=120pt]{figures/f5ftcs.ps}
\end{figure}




Stability analysis (J. v. Neumann):

At time $t_{n}$, expand $u(x,t)$:
$\displaystyle u_{j}^{n}$ $\textstyle =$ $\displaystyle \sum_{k} U_{k}^{n} e^{ikx_{j}}$  

where $k=2\pi l/L \;\; (l=0,1,\dots)$. Insert this in $u_{j}^{n+1}=T[u_{j'}^{n}]$ to find each Fourier component's propagation law, $
U_{k}^{n+1}=g(k) \, U_{k}^{n}
$.

$\Longrightarrow$Stable if $
\vert g(k) \vert \leq 1 \;\;{\rm for \; all \; k}
$.



Application to FTCS + advective equation with $j=c\,u$:
$\displaystyle g(k)\, U_{k}^{n} e^{ikj \, \Delta x}$ $\textstyle =$ $\displaystyle U_{k}^{n}
e^{ikj \, \Delta x} - \frac{c \, \Delta t}{2\, \Delta x} U_{k}^{n} \,
[e^{ik(j+1)\Delta x} - e^{ik(j-1)\Delta x}]$  

or
$\displaystyle g(k)$ $\textstyle =$ $\displaystyle 1- \frac{ic \, \Delta t}{\Delta x} \sin \, k \Delta x$  

Obviously, $\vert g(k)\vert > 1$ for any $k$; the FTCS method is inherently unstable.
next up previous
Next: 5.1.2 Lax Scheme Up: 5.1 Initial Value Problems Previous: 5.1 Initial Value Problems
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001