next up previous
Next: 4.2.2 Predictor-Corrector Method for Up: 4.2 Initial Value Problems Previous: 4.2 Initial Value Problems


4.2.1 Verlet Method

Apply DDST,
$\displaystyle \left. \frac{d^{2}y}{dt^{2}} \right\vert _{n}=\frac{\delta^{2}y_{n}}{(\Delta t)^{2}}
+O[(\Delta t)^{2}]$      

to find
$\displaystyle \fbox{$
y_{n+1}=2y_{n}-y_{n-1}+b_{n}(\Delta t)^{2}+O[(\Delta t)^{4}]
$}$      



Note: velocity $v \equiv \dot{y}$ does not appear explicitly. Use the crude estimate
$\displaystyle v_{n} = \frac{1}{2\Delta t}[y_{n+1}-y_{n-1}]+O[(\Delta t)^{2}]$      



Stability of the Verlet scheme:

Harmonic oscillator:
$\displaystyle y_{n+1}=2y_{n}-y_{n-1}-\omega_{0}^{2}y_{n}(\Delta t)^{2}$      

leads to
$\displaystyle g^{2}-(2-\alpha^{2})g+1=0$      

with $\alpha\equiv \omega_{0} \Delta t$. The root
$\displaystyle g=(1-\frac{\alpha^{2}}{2})\pm \sqrt{\frac{\alpha^{4}}{4}-\alpha^{2}}$      

is imaginary for $\alpha <2$, with $\vert g\vert^{2}=1$.

Equivalent formulations: Verlet leapfrog and Velocity Verlet.



\fbox{ \begin{minipage}{450pt}
{\bf Verlet leapfrog:}
\begin{eqnarray}
v_{n+1/2}...
...+ v_{n+1/2} \Delta t + O[(\Delta t)^{4}]
\nonumber \end{eqnarray}\end{minipage}}

Leapfrog version of the Verlet method

\fbox{\begin{minipage}{450pt}
{\bf Velocity Verlet:}
\begin{eqnarray}
y_{n+1}&=&...
...& v_{n+1/2} + b_{n+1} \frac{\Delta t}{2}
\nonumber \end{eqnarray}\end{minipage}}

Swope's formulation of the Verlet algorithm


next up previous
Next: 4.2.2 Predictor-Corrector Method for Up: 4.2 Initial Value Problems Previous: 4.2 Initial Value Problems
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001