next up previous
Next: 4.1.6 Runge-Kutta Method Up: 4.1 Initial Value Problems Previous: 4.1.4 Implicit Methods


4.1.5 Predictor-Corrector Method

Explicit predictor / implicit corrector
\begin{figure}\includegraphics[width=360pt]{figures/f4pc1.ps}
\end{figure}
PC method: a) EC ansatz: step function for $f(t)$; b) general predictor-corrector schemes: $1\dots$ linear NGB extrapolation; $2\dots$ parabolic NGB extrapolation

Predictor step:

- Extrapolate the function $f(t)$, using an NGB polynomial, into $[t_{n}, t_{n+1}]$.

- Formally integrate the r.h.s. in $dy/dt=f(t)$:
$\Longrightarrow$Adams-Bashforth predictor:
$\displaystyle y^{P}_{n+1}$ $\textstyle =$ $\displaystyle y_{n}+\Delta t \left[ f_{n} + \frac{1}{2} \nabla f_{n}
+ \frac{5}{12} \nabla^{2} f_{n}+ \frac{3}{8} \nabla^{3} f_{n} +
\dots \right]$  


- Truncate at some term to obtain the various predictors in the table.

\fbox{
\begin{minipage}{480pt}
{\bf Predictors for first order differential eq...
...\Delta t)^{5}] \nonumber
\\
\vdots && \nonumber
\end{eqnarray}\end{minipage}}

Adams-Bashforth predictors



Evaluation step:

As soon as the predictor $y^{P}_{n+1}$ is available, insert it in $f(y)$:
$\displaystyle f_{n+1}^{P}$ $\textstyle \equiv$ $\displaystyle f[y_{n+1}^{P}]$  

Corrector step:

- Again back-interpolate the function $f(t)$, using NGB, but now starting at $t_{n+1}$.

- Formally re-integrate the r.h.s. in $dy/dt=f(t)$:
$\Longrightarrow$Adams-Moulton corrector:

$\displaystyle y_{n+1}$ $\textstyle =$ $\displaystyle y_{n}+\Delta t \left[ f_{n+1} - \frac{1}{2} \nabla f_{n+1}
- \frac{1}{12} \nabla^{2} f_{n+1} - \frac{1}{24} \nabla^{3} f_{n+1}
- \dots \right]$  



\fbox{ \begin{minipage}{450pt}
{\bf Correctors for first order differential equa...
...\Delta t)^{5}]
\nonumber \\
\vdots && \nonumber
\end{eqnarray}\end{minipage}}

Adams-Moulton correctors

Finally: evaluate $f_{n+1} \equiv f(y_{n+1})$.

Stability of PC schemes:

Intermediate between the lousy explicit and the excellent implicit methods.

EXAMPLE: 2nd order PC + relaxation equation: stable for $\Delta t \leq 2/\lambda$. (The bare predictor would have $\Delta t \leq 1/\lambda$.)



next up previous
Next: 4.1.6 Runge-Kutta Method Up: 4.1 Initial Value Problems Previous: 4.1.4 Implicit Methods
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001