next up previous
Next: 3.3.3 Wiener-Lévy Process (Unbiased Up: 3.3 Random Sequences Previous: 3.3.1 Basics


3.3.2 Generating a stationary Gaussian Markov sequence

Solve the stochastic differential equation
$\displaystyle \dot{x}(t)$ $\textstyle =$ $\displaystyle - \beta \, x(t) + s(t)$  

with a stochastic ``driving'' process $s(t)$, assumed to be uncorrelated Gaussian noise, i.e. Gauss distributed about $\langle s \rangle =0$, with $
\langle s(0) \, s(t) \rangle = A\, \delta(t)
$.

The general solution to this equation reads
$\displaystyle x(t)$ $\textstyle =$ $\displaystyle x(0)\,e^{-\beta \, t} + \int_{0}^{t} e^{-\beta (t-t')}
\, s(t')\, dt'$  

Inserting $t=t_{n}$ and $t=t_{n+1} \equiv t_{n}+\Delta t$ one finds that
$\displaystyle x(t_{n+1})$ $\textstyle =$ $\displaystyle x(t_{n})\, e^{-\beta \, \Delta t} +
\int_{0}^{\Delta t} e^{-\beta (\Delta t-t')}
\, s(t_{n}+t')\, dt'$  



At any time $t$, the values of $x(t)$ belong to a stationary Gauss distribution with $\langle x^{2} \rangle $$=A/2\beta$, and the process $\{ x(t_{n}) \}$ has the Markov property.

The integrals

$\displaystyle z(t_{n})$ $\textstyle \equiv$ $\displaystyle \int_{0}^{\Delta t} e^{-\beta (\Delta t-t')}
\, s(t_{n}+t')\, dt'$  

are elements of a random sequence, with $z$ Gauss distributed with zero mean and $\langle z(t_{n})\,z(t_{n+k}) \rangle = 0$ for $k \neq 0$. Their variance is
$\displaystyle \langle z^{2} \rangle$ $\textstyle =$ $\displaystyle \frac{A}{2\beta}\,(1-e^{-2\beta\,\Delta t})$  

Here is the resulting recipe for generating a stationary, Gaussian Markov sequence: $\Longrightarrow$

\fbox{
\begin{minipage}{600pt}
{\bf \lq\lq Langevin Shuffle'':} \\ [12pt]
Let the des...
...langle z'^{\,2} \rangle =A\, \Delta t \, (1-\beta\,\Delta t)$.
\end{minipage}
}



EXERCISE: Employ the above procedure to generate a Markov sequence $\{ x_{n}\}$ with a given $\beta$. Check if the sequence shows the expected autocorrelation.



next up previous
Next: 3.3.3 Wiener-Lévy Process (Unbiased Up: 3.3 Random Sequences Previous: 3.3.1 Basics
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001