next up previous
Next: 2.3 Iterative Methods Up: 2.2 Exact Methods Previous: 2.2.3 LU Decomposition

2.2.4 Recursion Method

Find solution $\mbox{$\bf x$}$ if $\mbox{${\bf A}$}$ is tri-diagonal (maybe after Householder).

With
$\displaystyle \mbox{${\bf A}$}$ $\textstyle \equiv$ $\displaystyle \left(
\begin{array}{cccccc}
\beta_{1}& \gamma_{1} & 0 & . & . & ...
...1} & \gamma_{N-1} \\
. & . & . & 0 & \alpha_{N} & \beta_{N}
\end{array}\right)$  


the system of equations reads
$\displaystyle \beta_{1}\,x_{1} + \gamma_{1}\,x_{2}$ $\textstyle =$ $\displaystyle b_{1}$  
$\displaystyle \alpha_{i}\,x_{i-1}+\beta_{i}\,x_{i} + \gamma_{i}\,x_{i+1}$ $\textstyle =$ $\displaystyle b_{i}
\, ; \;\; i=2,\dots,N\!-\!1$  
$\displaystyle \alpha_{N}\,x_{N\!-\!1} + \beta_{N}\,x_{N}$ $\textstyle =$ $\displaystyle b_{N}$  

Introducing auxiliary variables $g_{i}$ and $h_{i}$ by the recursive ansatz
$\displaystyle x_{i+1}$ $\textstyle =$ $\displaystyle g_{i} \, x_{i} + h_{i} \, ; \; i=1, \dots , N\!-\!1$  

we find the ``downward recursion formulae''

$\textstyle \parbox{600pt}{
\begin{eqnarray}
g_{N\!-\!1}=\frac{-\alpha_{N}}{\bet...
...{i}+\gamma_{i}\,g_{i}}
\, ; \;\; i=N\!-\!1, \dots,2
\nonumber
\end{eqnarray}}$


Having arrived at $g_{1}$ and $h_{1}$ we insert the known values of $g_{i},\, h_{i}$ in the ``upward recursion formulae''

$\textstyle \parbox{600pt}{
\begin{eqnarray}
x_{1}&=&\frac{b_{1}-\gamma_{1}\,h_{...
...i+1}&=&g_{i}\,x_{i}+h_{i}\, ; \;\; i=1, \dots,N\!-\!1
\nonumber
\end{eqnarray}}$

(The equation for the starting value $x_{1}$ follows from $\beta_{1} x_{1} + \gamma_{1}x_{2}=b_{1}$ and $x_{2}=g_{1}x_{1}+h_{1}$.)




EXAMPLE: In $\mbox{${\bf A}$} \cdot \mbox{$\bf x$}=\mbox{$\bf b$}$, let

\begin{displaymath}
\mbox{${\bf A}$} \equiv
\left( \begin{array}{cccc}
\beta_{1...
...
\left( \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right)
\end{displaymath}


Downward recursion: $g_{3}=-\alpha_{4}/\beta_{4}=-1/3$, $h_{3}= b_{4}/\beta_{4}=4/3$, and
$\displaystyle i=3: \;\; g_{2}= -3/10 \;$ $\textstyle ,$ $\displaystyle \;\; h_{2}= 1/10$  
$\displaystyle i=2: \;\; g_{1}= -20/27 \;$ $\textstyle ,$ $\displaystyle \;\; h_{1}= 19/27$  

Upward recursion: $ x_{1} = 8/34$, and
$\displaystyle i=1: \;\; x_{2}$ $\textstyle =$ $\displaystyle 9/17$  
$\displaystyle i=2: \;\; x_{3}$ $\textstyle =$ $\displaystyle -1/17$  
$\displaystyle i=3: \;\; x_{4}$ $\textstyle =$ $\displaystyle 23/17$  




next up previous
Next: 2.3 Iterative Methods Up: 2.2 Exact Methods Previous: 2.2.3 LU Decomposition
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001