next up previous
Next: 8.2.2 Pressure Method Up: 8.2 Incompressible Flow with Previous: 8.2 Incompressible Flow with

8.2.1 Vorticity Method

Take the rotation of

\begin{displaymath}
\frac{\partial \mbox{$\bf v$}}{\partial t} + (\mbox{$\bf v$}...
...box{$\bf v$}=
- \nabla \bar{p} + \nu \nabla^{2}\mbox{$\bf v$}
\end{displaymath}

to find
\begin{displaymath}
\frac{\partial \mbox{$\bf w$}}{\partial t} + (\mbox{$\bf v$} \cdot \nabla )\mbox{$\bf w$}=
\nu \nabla^{2}\mbox{$\bf w$}
\end{displaymath} (8.55)

with the vorticity $\mbox{$\bf w$}\equiv \nabla \times \mbox{$\bf v$}$.
$\Longrightarrow$ Vorticity is transported both by an advective process ( $\mbox{$\bf v$} \cdot \nabla \, \mbox{$\bf w$}$) and by viscous diffusion.

Write the (divergence-free) velocity as the rotation of a streaming function $\mbox{$\bf u$}$:
\begin{displaymath}
\mbox{$\bf v$}\equiv \nabla \times \mbox{$\bf u$}
\end{displaymath} (8.56)

This does not determine $\mbox{$\bf u$}$ uniquely; $\Longrightarrow$require that $\nabla \cdot \mbox{$\bf u$}=0$.

Basic equations for the vorticity method:


$\displaystyle \frac{\partial \mbox{$\bf w$}}{\partial t} + (\mbox{$\bf v$} \cdot \nabla )\mbox{$\bf w$}$ $\textstyle =$ $\displaystyle \nu \nabla^{2}\mbox{$\bf w$}$ (8.57)
$\displaystyle \nabla^{2}\mbox{$\bf u$}$ $\textstyle =$ $\displaystyle -\mbox{$\bf w$}$ (8.58)
$\displaystyle \mbox{$\bf v$}$ $\textstyle =$ $\displaystyle \nabla \times \mbox{$\bf u$}$ (8.59)



Two-dimensional case: $\mbox{$\bf u$}$ and $\mbox{$\bf w$}$ have only $z$-components:
$\displaystyle \frac{\partial w}{\partial t}$ $\textstyle =$ $\displaystyle \nu \nabla^{2}w -\left(v_{x}\partial_{y}-v_{y}\partial_{x}\right)w$ (8.60)
$\displaystyle \nabla^{2}u$ $\textstyle =$ $\displaystyle -w$ (8.61)
$\displaystyle \mbox{$\bf v$}$ $\textstyle =$ $\displaystyle u \nabla \times \mbox{$\bf e$}_{z} = \mbox{$\left( \begin{array}{r} \partial _{y}u \\  \vspace{-9 pt}\\  -\partial_{x}u \end{array} \right)$}$ (8.62)

$\Longrightarrow$Apply Lax-Wendroff to these equations:

% latex2html id marker 28354
\fbox{
\begin{minipage}{420pt}
{\bf Vorticity met...
...+1}-4w_{i,j}^{n}
\right)
\nonumber \end{eqnarray}\end{enumerate}\end{minipage}}

Stability is again governed by the CFL condition
\begin{displaymath}
\Delta t \leq \frac{2 \Delta l}{\sqrt{2}v_{max}}
\end{displaymath} (8.63)

In addition, the presence of diffusive terms implies the restriction
\begin{displaymath}
\Delta t \leq \frac{(\Delta l)^{2}}{\nu}
\end{displaymath} (8.64)


next up previous
Next: 8.2.2 Pressure Method Up: 8.2 Incompressible Flow with Previous: 8.2 Incompressible Flow with
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001