next up previous
Next: 1.3.3 First derivatives in Up: 1.3 Difference Quotients Previous: 1.3.1 First Derivatives

1.3.2 Second Derivatives

The same procedure as before yields

DDNGF:
$\displaystyle {F_{k}}''$ $\textstyle \approx$ $\displaystyle \frac{1}{(\Delta x)^{2}} \left[ \Delta^{2} \mbox{$f_{k}$}
- \Delta^{3} \mbox{$f_{k}$}+ \frac{11}{12} \Delta^{4} \mbox{$f_{k}$}- \dots \right]$  



Example:
$\displaystyle {F_{k}}''$ $\textstyle =$ $\displaystyle \frac{1}{(\Delta x)^{2}} \Delta^{2} \mbox{$f_{k}$}+ O(\Delta x)$  
  $\textstyle =$ $\displaystyle \frac{1}{(\Delta x)^{2}} \left[ f_{k+2}-2f_{k+1}+f_{k}\right]
+ O(\Delta x)$  
    $\displaystyle \;\;{\rm\hspace{12em}(pretty \hspace{0.6 ex} bad!)}$  




Let's try again....

DDNGB:
$\displaystyle {F_{k}}''$ $\textstyle \approx$ $\displaystyle \frac{1}{(\Delta x)^{2}}
\left[ \nabla^{2} \mbox{$f_{k}$}
+ \nabla^{3} \mbox{$f_{k}$}+ \frac{11}{12} \nabla^{4} \mbox{$f_{k}$}+ \dots \right]$  



Example:
$\displaystyle {F_{k}}''$ $\textstyle =$ $\displaystyle \frac{1}{(\Delta x)^{2}} \nabla^{2} \mbox{$f_{k}$}+ O(\Delta x)$  
  $\textstyle =$ $\displaystyle \frac{1}{(\Delta x)^{2}} \left[ f_{k}-2f_{k-1}+f_{k-2}\right]
+ O(\Delta x)$  
    $\displaystyle \;\;{\rm\hspace{10em}(pretty \hspace{0.6 ex} bad,\hspace{0.6 ex} too!)}$  




And the winner is...

DDST:
$\displaystyle {F_{k}}''$ $\textstyle \approx$ $\displaystyle \frac{1}{(\Delta x)^{2}} \left[ \delta^{2} \mbox{$f_{k}$}- \frac{...
...elta^{4} \mbox{$f_{k}$}
+ \frac{1}{90} \delta^{6} \mbox{$f_{k}$}- \dots \right]$  



Example:
$\displaystyle {F_{k}}''$ $\textstyle =$ $\displaystyle \frac{1}{(\Delta x)^{2}} \delta^{2} \mbox{$f_{k}$}
+ O\left[(\Delta x)^{2}\right]$  
  $\textstyle =$ $\displaystyle \frac{1}{(\Delta x)^{2}} \left[ f_{k+1}-2f_{k}+f_{k-1}\right]
+ O\left[(\Delta x)^{2}\right]$  
    $\displaystyle \;\;{\rm\hspace{12em}(much \hspace{0.6 ex} better!)}$  




Figure: Interpolation, including first and second derivatives as approximated by backward (blue), forward (green) and Stirling (red) differencing. In the neighborhood of $x_{k}$ (black dot) the tabulated function is best represented by Stirling. The interpolation curves are actually parabolas, but as only their values at $x_{k \pm l}$ are of interest they are drawn as broken lines.




next up previous
Next: 1.3.3 First derivatives in Up: 1.3 Difference Quotients Previous: 1.3.1 First Derivatives
Franz J. Vesely Oct 2005
See also:
"Computational Physics - An Introduction," Kluwer-Plenum 2001