next up previous

5 Spheroellipsoids/Spheres

Truncated ellipsoid capped by sphere segments with continuous tangents

Advantages:



$z_{1}$ ... truncation half length (given)
$z_{0}=z_{1}(1-a^{2}/c^{2})$ ... center of cap
$r_{c}^{2}=a^{2}[1-(z_{1}^{2}/c^{2})(1-a^{2}/c^{2})]$ ... radius of cap

Excluded volume SE-SP:
Truncation half length

\begin{displaymath}
z_{2}=z_{1}+\frac{a^{2}}{c^{2}} \,
\frac{z_{1}}{\sqrt{1-(z_{1}^{2}/c^{2})(1-(a^{2}/c^{2}))}}
\end{displaymath} (8)

$\Longrightarrow$Chebysheff polynomials for body:
$\displaystyle I_{body}(k)$ $\textstyle \equiv$ $\displaystyle \pi \int_{-z_{2}}^{z_{2}}dz \, \rho^{2}(z) \cos kz
=C \pi \int_{-u_{2}}^{u_{2}}du \, f(u) \cos kCu$  
  $\textstyle \approx$ $\displaystyle C \pi
\left[
\frac{c_{0}I_{0}(u_{2})}{2} + \sum_{l=2}^{10}c_{l}I_{l}(u_{2})
\right]$ (9)

with $C=c+r_{2}$, $u_{2}=z_{2}/C$, and
\begin{displaymath}
I_{l}(u_{2})=
\int_{-u_{2}}^{u_{2}}du \, T_{l}(u) \cos kCu
=...
...{2}}du \, u^{m} \cos kCu
=\sum_{m=0}^{l} d_{lm} J_{m}(u_{2};k)
\end{displaymath} (10)

The integrals $J_{m}(u;k)$ obey the recursion
$\displaystyle J_{0}(u;k)$ $\textstyle =$ $\displaystyle \frac{2}{kC} \sin kCu$ (11)
$\displaystyle J_{m+2}(u;k)$ $\textstyle =$ $\displaystyle \frac{2}{kC} u^{m+2} \sin kCu
+\frac{2(m+2)}{(kC)^{2}} u^{m+1} \cos kCu
- \frac{(m+2)(m+1)}{(kC)^{2}} J_{m}(u;k)$ (12)

To this we add the caps according to $I_{12}=I_{body}+2I_{cap}$. The cap parameters are $z_{0}$ (center), $r_{c}+r_{2}$ (radius), and $z_{2}$ (rim).



Applet Koda_se: Start




(No MC results yet)



next up previous
F. J. Vesely / University of Vienna