next up previous

3 Ellipsoids/Spheres

Again, compute integrals (cosine transforms) over $V_{excl}$. Here we have a problem:
V_excl for: (a) ELL-ELL, (b) ELL-SPH, (c) SPH-SPH


The excluded volume between ellipsoid and sphere is not a simple object:



$\Longrightarrow$ Approximate $V_{excl}$ by Chebyshev polynomials. Even polynomials $T_{0}, \dots T_{10}$ suffice.

$\Longrightarrow$Integrations easy!

Details:

$\rho^{2}(z)$ ... squared radius of excluded volume
$u=z/C$ where $C=c+r_{2}$ is the long half axis of the excluded oval
\begin{displaymath}
f(u) \equiv \rho^{2}(z)
\approx \frac{c_{0}}{2}
+ \sum_{l=2}^{L-1} c_{l} \, T_{l}(u)
\end{displaymath} (2)

$L-1$ in the range $10-20$
only even terms
coefficients:
\begin{displaymath}
c_{l}=\frac{2}{N} \sum_{n=1}^{N} f(u_{n}) \, T_{l}(u_{n})
\;\;\;\;\;\;l=0, \dots L-1, \dots N-1
\end{displaymath} (3)

$N$ ... target index $N \geq L$
$u_{n}=\cos \pi (n-1/2)/N$ ... zeros of $T_{N}(u)$

Choosing $L=11$ we have

$\displaystyle I_{12}(k)$ $\textstyle \equiv$ $\displaystyle \pi \int_{-C}^{C}dz \, \rho^{2}(z) \cos kz
=A \pi \int_{-1}^{1}du \, f(u) \cos kCu$  
  $\textstyle \approx$ $\displaystyle A \pi \left[ \frac{c_{0}I_{0}}{2} + \sum_{l=2}^{10}c_{l}I_{l}\right]$ (4)

with
\begin{displaymath}
I_{l}=
\int_{-1}^{1}du \, T_{l}(u) \cos kCu
=\sum_{m=0}^{l} ...
...t_{-1}^{1}du \, u^{m} \cos kCu
=\sum_{m=0}^{l} d_{lm} J_{m}(k)
\end{displaymath} (5)

$d_{lm}$ ... $m$-th polynomial coefficient of $l-th$ Chebysheff polynomial
The integrals $J_{m}(k)$ obey the recursion
\begin{displaymath}
J_{0}=\frac{2}{kC} \, \sin kC, \;\;\;\;\;\;
J_{m+2}=\frac{2...
...)}{(kC)^{2}} \, \cos kC
- \frac{(m+2)(m+1)}{(kC)^{2}}\, J_{m}
\end{displaymath} (6)





Applet Koda_el: Start




Now: Monte Carlo simulation of Spheres and parallel ellipsoids

Overlap test for ellipses and spheres: Chebysheff again!

MC results for $c/b=12$, $conc_{sph}=0.6$:


 
    eta=0.300    
 
    eta=0.542




Mod. squ. of smectic mode

next up previous
F. J. Vesely / University of Vienna